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Review of last class
• Sextant measurements using the sun:

– We tracked the sun to find its highest elevation and 
the time this occurs.

• Our one cheat was using GPS to get time (and to 
check the results)
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Today’s Class
• Review of linear Algebra.  Class will be based on the 

book “Linear Algebra, Geodesy, and GPS”, G. Strang
and K. Borre, Wellesley-Cambridge Press, Wellesley, 
MA, pp. 624, 1997

• Topics to be covered will be those later in the course
• General areas are:

– Vectors and matrices
– Solving linear equations
– Vector Spaces
– Eigenvectors and values
– Rotation matrices
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Basic vectors and matrices
• Important basic concepts
• Vectors: A column representing a set of n-quantities

– In two and three dimensions these can be visualized as 
arrows between points with different coordinates with the 
vector itself usually having on end at the origin

– The same concept can be applied to any n-dimensional vector
– Vectors can be added and subtracted (head-to-tail) by adding 

and subtracting the individual components of the vectors.
– Linear combinations of vectors can be formed by scaling and 

addition.  The result is another vector e.g., cv+dw
– (Often a bold symbol will be used to denote a vector and some 

times a line is drawn over the top).
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Lengths and dot products
• The dot product or inner product of two vectors is 

defined as:

• The order of the dot product makes no difference.
• The length or norm of a vector is the square-root of 

the dot product
• A unit vector is one with unit length 
• If the dot product of two vectors is zero they are said 

to be orthogonal (orthonormal if they are unit vectors)
• The components of a 2-D unit vector are cos and sin 

of the angle the vector makes to the x-axis.

  v ⋅ w = v1w1 + v2w2 +L+ vnwn
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Angles between vectors
• The cosine formula:

• Schwarz inequality: The dot product of any two 
vectors is less or equal the product of the lengths of 
the two vectors

• The representation of a plane is by the vector that is 
normal to it.  For a plane through the origin, all vectors 
in that plane must have zero dot product with the 
normal.  This then provides an equation for the plane.

cosθ =
v ⋅ w

| v || w |
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Planes
• If a plane does not contain then the origin, then the 

coordinates of a point on the normal containing the 
plane specifies the plane.  The dot product of the 
normal and points in the plane then is a constant.

• If the normal to the plane is a expressed as a unit 
vector, the constant is the closest distance of the 
plane to the origin.

• In N-dimensional space, the concept of a plane is the 
same: it is defined by n.v=d

• Any two non-collinear vectors define a plane



10/18/2006 12.215 Modern Naviation L09 8

Matrices and linear equations
• Any set of linear equations (i.e., equations which do 

not contain powers or products of the unknowns) can 
be written in matrix form with the coefficients of the 
linear equations being the elements of the matrix.

• The rows and columns of matrices are themselves 
vectors.

• A matrix represents a linear combination of the 
elements of a vector to form another vector of possibly 
different  length:

Ax = b where x and b are vectors of length n and m
A is a m - rows and n column matrix
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Solving linear equations
• If the x and b vectors are the same length, then given 

A and b it is often possible to find x (sometimes this is 
not possible and sometimes x may not be unique).

• There a many methods for solving this type of system 
but the earliest ones are by elimination i.e., linear 
combinations are formed of the rows of the matrix A
that eliminate one of the elements of x.  The process 
is repeated until only one element of x remains (which 
is easily solved).  Back substitution allows all the 
components of x to be computed.

• This process is sometimes viewed as multiplying by 
eliminator matrices.
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Rules of matrix multiplication
• The product of two matrices A (n-rows and m-

columns) by B (r-rows and c-columns) is only possible 
if m=r

• The resultant matrix has n-rows and c-columns.
• In general, AB does not equal BA even the matrices 

are square
• A matrix multiplication is the dot products of rows of 

the first matrix with the columns of the second matrix
• Matrix multiplication is associative (AB)C=A(BC) but 

not commutative
• A matrix is invertible if A-1 such that A-1A=I where I is 

a unit matrix, exists.
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Factorization
• In factorization a matrix A is written as A=LU where is 

L is a lower triangular matrix and U is an upper 
triangular matrix.

• The individual matrices L and U are not unique (L can 
be multiplied by a scalar and U divided by the same 
scalar with out changing the product. Convention has 
the diagonal of L being 1’s.

• Why factorize? Since forms are lower triangular, 
substitute down (L) and up (U) the matrix

Solve Lc = b then solve Ux = c to solve Ax = b
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Characteristics of LU
• When the rows of A start with zero so do the 

corresponding rows of L; when the columns of A start 
with 0 so do the columns of U.

• Many estimation problems are “band-limited” i.e., only 
a small number of the elements around the diagonal 
are non-zero; the L and U matrices will also be band-
limited but the inverse of such a matrix is normally full.  
(Factorization saves time and space).

• http://web.mit.edu/18.06/www/Course-Info/Mfiles/slu.m is a link 
to an SLU matlab code (also code at same site that 
pivots the matrix which is a more stable approach).
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Transpose
• The transpose of a matrix is the matrix with rows and 

columns switched.  Usually denoted as AT or 
sometimes A’

• Some rules: (AB)T=BTAT

• A symmetric matrix is one for which A=AT

• The products ATA and AAT generate symmetric 
matrices. We will see these forms many times in when 
we cover estimation and statistics.
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Matrix rank
• The rank of a matrix is the number of non-zero pivots 

in the matrix.  Pivots are the number you divide by 
when doing Gauss elimination or when solving the UL 
system.

• The rank is the number of independent rows in a 
matrix (i.e., rows that are not linear combinations of 
other rows).

• If the rank of a square matrix is less than its dimension 
then the matrix is singular:  Two cases:
– Infinite number of solutions
– No solutions
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Vector spaces
• An nxn matrix can be seen as defining a space made 

up of the n column vectors of the matrix
• Sub-spaces are vector spaces that satisfy two 

requirements: if v and w are vectors in a subspace 
and c is a scalar; the v+w is in the subspace and cv is 
in the subspace (eg., a plane is a subspace of 3-D 
space).

• Vectors that lie in a plane, all addition and scaling of 
these vectors lie in that same plane

• Non-singular matrices allow transformation back and 
forth between two spaces.
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The null space
• An important case (especially in estimation) is the null 

space.  This is the set of non-trivial vectors that satisfy 
the equation:

Ax = 0
• Any vectors x that satisfy this equation collapse to the 

null space meaning that you can reverse the 
transformation.

• In estimation, vectors that are in the null space can 
not be estimated and an arbitrary component of them 
can be added to any solution.

• Generally null spaces exist when the columns of a 
matrix are linearly dependent.
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Eigenvectors and Eigenvalues
• This second applies to square matrices
• Normally when a matrix multiplies a vector, the vector changes 

direction (i.e., the dot product is not just the product of the lengths 
of the vectors)

• There are specific vectors that when multiplied by a specific 
matrix do not change direction.  

• These are called eigenvectors and satisfy the equation: Ax=λx
• By convention the eigenvectors are unit vectors.
• Normally the number of eigenvectors match the dimension of the 

matrix
• For symmetric matrices the eigenvectors are all orthogonal.
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Equation for eigenvalues
• To solve the eigenvalue problem we find the values of 

λ that make the determinate of (A-λI)=0
• Once a matrix is factored, the determinate is the sum 

of the diagonal of the U matrix.
• The determinate generates an nth order polynomial for 

λ where n is the dimension of the matrix.
• The product of the eigenvalues is the determinate of 

the matrix
• The sum of the eigenvalues is the trace of the matrix 

(i.e., the sum of the diagonal elements).
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Diagonalization of a matrix
• If the eigenvectors are put in a column matrix S, then

• Since the eigenvectors for a symmetric matrix are 
orthogonal, S-1=ST (most commonly in estimation 
problems we encounter symmetric matrices.)

• Symmetric matrices with all positive eigenvalues are 
said to be positive definite. 

 

S−1AS =
λ1 L 0
M O M

0 L λn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤

⎦

⎥
⎥
⎥
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Other matrices that we will encounter
• Rotation matrices: These are matrices that rotate a 

vector but do not change its size.  They can be 
composed of three rotations about xyz axes: Form 
below is for a rigid body rotation.  The signs are 
flipped for coordinate system rotations. The Z-rotation 
follows the pattern with the signs in the X position

Rx =
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;Ry =

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;
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Rotation matrices
• The form shown is for rotating a body, rotations of the 

coordinate system itself are of the same form except 
that the signs changes places.

• Note: When coordinate systems are rotated, after the 
first rotation the axes change location and hence the 
angle of the rotation about the new axes will change.

• In general, the order the rotation are applied will effect 
the results.

• If the direction cosines of a set of axes is known in the 
other frame, the rotation matrix can be directly written 
with the columns of the X system in the X’ system 
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Direction cosines relationship
• Given two coordinate systems X and X’, to find the 

coordinates of vector given in the X system in the X’s 
a rotation matrix is constructed (could be made up of 
multiplication by the three basic rotation matrices)

• In general the rotation matrix looks like

X'=
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
X ← Direction cosines of X'  in X

          ↑  Direction cosines of X in X'  system
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Small angle rotations
• If the rotation are small, then cos(θ)∼1 and sin(θ)∼θ in this case 

the rotation matrix reduces to

• Rotation rate matrices are of this form (but after the rotation has 
persisted the axes change direction by a large and the equations
needed to be integrated. (Example would be effects of 
gravitational torques on the equatorial bulge.

R =
1 −θz θy

θz 1 −θx

−θy θx 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

where θx ,  θy ,  and θz are the rotations around each axis
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Summary
• General review of linear algebra:

– Vectors and matrices
– Solving linear equations
– Vector Spaces
– Eigenvectors and values
– Rotation matrices

• These concepts will be used in latter classes when we 
cover satellite motions and estimation.
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