
8 Ecosystem stability 

References: May [47], Strogatz [48]. 

In these lectures we consider models of populations, with an emphasis on the 
conditions for stability and instability. 

8.1 Dynamics of a single population 

Set 
N = population size 
r = growth rate 

8.1.1 Exponential growth 

The simplest possible growth model has N merely growing at rate r: 
dN 

= rN, r > 0. 
dt 

The solution predicts exponential growth: 
N(t) = N(0)e rt . 

Such a model works works well when the resource that a population requires 
for growth is sufficiently abundant. 

In cases of such unlimited growth, 
1 dN 

r = = ‘per capita’ or ‘specific’ growth rate 
N dt 

is constant, independent of N . 

8.1.2 Logistic growth 

Eventually, however, resources become depleted and/or the population be­
comes overcrowded. 
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Thus as N increases, we expect that r will decrease. 

Moreover it can even become negative, meaning that the death rate exceeds 
the birth rate. 

Graphically, we expect that r(N) behaves like 

The point at which r(N) = 0 is a special population size which neither grows 
nor decays. It corresponds to N = K, where 

K = carrying capacity. 

In most cases we can’t really know the shape of r(N), but the notion of a 
carrying capacity is itself reasonably sharp. 

So the simplest assumption would be to assume that r(N) decreases linearly: 

Then � � 
N 

r(N) = r 1 − 
K 

and our growth model now reads � � 
dN N 
dt 

= rN 1 − 
K 

, (56) 

known as the logistic equation or the Verhulst model. 

The logistic equation can be solved exactly but our goals are better served  
by analyzing it qualitatively.  

First, we plot dN/dt vs. N , i.e., we plot the RHS of the logistic equation:  
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We consider only N ≥ 0 since populations cannot be negative. 

Note that 

Ṅ 	 = 0, N = 0 or K 
Ṅ > 0, 0 < N < K 
Ṅ < 0, N > K 

We call N = 0 and N = K fixed points because they correspond to neither 
growth nor decay. We denote them with asterisks: 

N1 
∗ = 0,  N2 

∗  = K.  

Between N1
∗ = 0 and N2

∗ = K, N grows toward K; conversely, for N > K,  
N decays toward K. 

Thus we say that 
N1 
∗ = 0 is unstable  

and that  
N2 
∗ = K is stable.  

Indeed, we see that as long as we initiate growth with N(0) > 0 , the popu­
lation always evolves to the carrying capacity. 

How it evolves depends on the initial condition: 

•	 Small populations N < K grow exponentially and later slowly towards 
K, sometimes called S-shaped or sigmoid-shaped growth. 

•	 Large populations N > K decay exponentially to K. 
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Although specific details of the logistic model should not be considered as 
truly representative of population growth, the basic picture of exponential 
growth followed by saturation is widely but not universally observed. 

8.1.3 Hyperbolic growth 

References: von Foerster et al. [49], Cohen [50], Johansen and Sornette [51]. 

One potential criticism of the logistic model concerns the notion of a fixed 
carrying capacity. 

For example, it is possible that, over long time scales, an organism can better 
dominate its niche as its population increases. 

It has also been proposed that species can create niches within which they, 
or new species that evolved from them, can thrive [52]. 

An outstanding example of a species with varying K is us: as our population 
has grown, technology has improved, allowing the population to grow even 
further. 

Thus we consider that 
K = K(N). 

We then define the rescaled rate constant 

r� = r/K(0) 

so that the logistic equation now reads 
dN 

= r�N(K − N). 
dt 
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For K = K(0) = const, this is merely a re-expression of equation (56). 

Now, however, we imagine that K increases with N like 

K ∼ Nα , N � K(0). 

When α > 1, eventually K � N , and the growth equation is approximated 
by 

dN ∼ N 1+α , α > 1. 
dt 

Separating variables, we have 
dN 
N1+α = dt, 

which upon integration yields 
−1 

N−α = t + const. 
1 + α 

or 
N−α = (1 + α)(tc − t), 

where tc is a re-expression of the original integration constant. 

The solution is 
N(t) ∝ (tc − t)−1/α, t tc,→ 

which exhibits a singular blow-up as t tc, with tc determined by the initial →
conditions.  

Singular growth is sometimes called hyperbolic.  

Another mechanism for hyperbolic growth would be to consider the per capita  
growth rate r to grow with N , like 

r ∼ Nβ , β > 0. 

Such an expression assumes that growth is not limited by carrying capacity 
but instead reflects the ability of a population to find more efficient ways to 
reproduce (or ways to minimize its death rate). 

We then have 
dN 

= rN ∼ N 1+β ,
dt 
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and therefore, as above, 
N(t) ∝ (tc − t)−1/β 

corresponding to hyperbolic growth for β > 0 (whereas above we required 
α > 1). 

In 1960, von Foerster et al. [49] showed that world population for roughly the 
last millenium fit such a curve, with β � 1. 

Since the fit provided an estimate of tc, von Foerster’s paper, published in 
Science, was titled Doomsday: Friday 13 November, A.D. 2026. 

The essential observation here is that human population growth has been 
super-exponential. Around 1970, however, the growth rate slowed. 

8.2 Linear stability analysis 

We now return to the questions of stability we addressed in Section 8.1.2. 

8.2.1 Single species 

We write our population model more generally as 

Ṅ = F [N(t)]. 

and interpret N as the number of individuals of a particular species. 

This image has been removed due to copyright restrictions.
Please see Figure 1. von Foerster, H., Mora, P. & Amiot,
L. W. Doomsday:Friday, 13 November, A.D. 2026.
Science 132(1960): 1291-1295.
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Fixed points N ∗ are given by 

0 = F (N∗). 

To determine the behavior of the system near a fixed point, we consider small 
disturbances x(t) so that perturbed populations 

x(t) = N(t) − N ∗. 

Differentiation both sides yields 

˙ẋ = N. 

We therefore write 
ẋ = F (N) = F (N ∗ + x) 

and we expand F around N ∗: 

F (N ∗ + x) = F (N ∗) + xF �(N ∗) + O(x 2). 

Noting that the LHS is simply ẋ and that F (N∗) = 0, we have, neglecting 
terms of order x2 and higher, 

ẋ = xF �(N ∗). (57) 

Thus x grows if F �(N ∗) > 0, and x decays if F �(N ∗) < 0. 

The prediction of this linear stability analysis is either exponential growth 
away from a fixed point or exponential growth towards it. 

More specifically, we set 
a = F �(N ∗) 

and solve the linearization (57) to find that x evolves as 

x(t) = x(0)e at . 

Thus 

a < 0 N ∗ is stable⇒ 
a > 0 N ∗ is unstable⇒ 

Of course, the range of stability was already evident from our graphical anal­
ysis. 
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However we now also know the rate |a| at which the system grows away from, 
or decays toward, the fixed point. 

To apply this method to the logistic model (56), we note that 

2N ∗ 
a = F �(N ∗) = r 1 − 

K 

Then 
a(N∗ = 0) = r 

and 
a(N ∗ = K) = −r. 

The region of stability therefore depends on the sign of r. 

8.2.2 Multiple species 

The stability of a multispecies model follows similarly. 

We imagine m species, each with an abundance Ni, i = 1, . . . ,m, that evolves 
as 

Ṅ 
i = Fi(N1, N2, . . . , Nm), i = 1, . . . , m. 

The function Fi determines the growth rate of Ni as a function of its in­
teractions with other populations (and itself). p The fixed points Ni 

∗ are 
determined by setting the time derivative to zero: 

0 = Fi(N1 
∗, N2 

∗, . . . , N ∗ ), i = 1, . . . , m. m 

We expand around the fixed points: 

Ni(t) = Ni 
∗ + xi(t), i = 1, . . . , m. 

where xi(t) is a perturbation to the ith population. 

Neglecting terms of second order and higher in the perturbations, we obtain 
m  

= xj  
dxi 

dt  
∂Fi 

,  i = 1, . . . , m.  ∂Nj N� =N� ∗j=1 
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���� ∂Fi 

To simplify, we define the Jacobian matrix A with elements 

aij = ,  i, j = 1, . . . , m.  
∂Nj N� =N� ∗ 

In population ecology A is called the community matrix. We use it to rewrite 
the linearized dynamics compactly as 

d�x 
dt 

= A�x (58) 

where �x is an m × 1 column vector of the xi’s. 

We seek solutions of the form 

�x(t) = e λt�v, 

where �v �= 0 and λ is a growth rate. 

Inserting into (58), we obtain 

λeλt�v = Aeλt�v 

or 
A�v = λ�v. (59) 

Therefore �v is an eigenvector of A and λ is an eigenvalue 

The eigenvalues and eigenvectors solve the characteristic equation 

det(A − λI) = 0, 

where I is the m × m identity matrix. 

Non-trival solutions occur when the determinant of A − λI vanishes. 

In other words, we find the eigenvectors λ by solving 

det(A − λI) = 0, 

and for each eigenvalue we then find the eigenvectors �v by solving (59). 

The general solution of (58) (assuming that all eigenvalues are distinct, and 
therefore that the eigenvectors are linearly independent) is then the linear 
combination 

�x(t) = c1e λ1t�v1 + c2e λ2t�v2 + . . . + cme λmt�vm 
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where the ci’s depend on the initial conditions. 

In general, the m eigenvalues are complex numbers 

λ = µ + iν 

that are solutions to an mth order polynomial. 

Stability is determined by the sign of largest µ: 

µmax < 0 stable⇒ 
µmax = 0 marginally stable ⇒ 
µmax > 0 unstable.⇒ 

A non-zero imaginary part ν corresponds to oscillations eiνt with frequency 
2π/ν. 

8.3 Predator-prey cycles: the Lotka-Volterra equations 

We now illustrate these principles with a simple two-component model of a 
predator and its prey: 

Ṅ 1 = N1(a − αN2) 
Ṅ 2 = N2(−b + βN1). 

In this system, known as the Lotka-Volterra equations, 

N1 = number of prey 
N2 = number of predators 
a = prey growth rate 
b = predator death rate 

α, β = rates of interaction between predators and prey 

a, b, α, and β are all positive. 

The fixed points occur where the derivatives vanish. We find one fixed point 
at 

N1 
∗ = b/β  

N2 
∗ = a/α  
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In the notation of the previous section, we have 

F1(N1, N2) = N1(a − αN2) 
F2(N1, N2) = N2(−b + βN1). 

The partial derivatives are 

∂F1/∂N1 = a − αN2 

∂F1/∂N2 = −αN1 

∂F2/∂N1 = βN2 

∂F2/∂N2 = −b + βN1. 

and the Jacobian matrix is then 

∂Fi 0 −αb/β 
0 A =    =  

βa/α ∂Nj N1∗,N2 
∗ 

The eigenvalues λ solve  

det    
−λ −αb/β 
βa/α −λ = 0   

which yields 
λ2 + ab = 0 

and therefore 
λ = ±iω, ω = 

√
ab. 

Since Re(λ) = 0 , the fixed point is marginally stable. 

But the non-zero imaginary part means that perturbations to the fixed point 
are oscillatory, so that 

�x(t) = �c1 cos ωt + �c2 sin ωt 

where c1 and c2 are related to the initial conditions. 

In the phase space of x1 and x2, linear stability analysis thus predicts that 
the perturbed trajectories are simply circles about the fixed point, the radius 
of which depends on the initial conditions. 
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Of course, larger amplitude trajectories depart from the circular shape due 
to nonlinear effects. 

The time functions x1(t) are simple oscillations. Note, however, that the 
predator population N2 is delayed by a quarter-cycle (π/2) with respect to 
the prey population N1. 

Specifically, we see that the growth rate of the predator is fastest when the 
prey population peaks, and conversely the predator death rate is fastest when 
the prey population bottoms out. 

Remarkably, just such a pattern is found in natural systems. The classic 
case is that of the 19th century Canadian lynx (predator) and snowshoe hare 
(prey) populations near Hudson Bay: 

Data from Ref. [53] 
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8.4 Stability vs. complexity 

These considerations raise a big question: What makes an ecosystem stable? 

We really don’t know, but empirically there is abundant evidence that the 
global ecosystem has changed greatly over long time scales. 

As an example, note the Phanerozoic fossil record of biodiversity: 

The causes of the fluctuations in this record are likely manifold, and are 
widely debated. 
One issue concerns the relative importance of intrinsic mechanisms of insta­
bility compared to extrinsic drivers such as impacts. 

We proceed to address the possibility of intrinsic instability within the context 
of the Lotka-Volterra model. 

One question that may be precisely answered is the following: How is stability 
related to diversity (i.e., complexity)?. 

To address this question, we return to the general formulation of Section 
8.2.2, wherein each species potentially interacts with m − 1 others: 

Ṅ 
i = Fi(N1, N2, . . . , Nm), i = 1, . . . , m. 

From linear stability analysis, we found that perturbations from fixed points 
evolve like 

d�x 
= A�x,

dt 
and that a fixed point is stable if, among the eigenvalues λ = µ + iν of A, we 
have µmax < 0. 
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168 
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We now focus entirely on the community matrix A. 

We require that each species be by itself stable, so that if perturbed individ­
ually from its fixed point it relaxes back to it. 

We take each time constant to be unity, so that 

aii = −1. 

Next, we allow interactions between species i and j via a matrix made of 
off-diagonal terms bij. 

As in the construction of a random graph or food web, we allow only only a 
fraction 0 < C < 1 of all possibile interactions, so that 

bij = 0 with probability 1 − C. 

The values of the non-zero bij give the strength and sign of the interaction 
between species i and j. We choose them randomly, with zero mean and 
variance s2: 

with probability C : �bij� = 0 and b2 = s 2 .ij 

Assembling both pieces, the m × m community matrix 

A = B − I. 

A is stable only if each of its eigenvalues have negative real parts. 

Thus one would like to know, as a function of the the system size m, the 
connectance C, and the standard deviation s, the probability 

P (m, C, s) = probability of stability 

The May-Wigner stability theorem states [47, 54] 

P 1 if s(mC)1/2 < 1→ 
P 0 if s(mC)1/2 > 1.→ 

Thus we have an answer to our question about the relation of stability to 
complexity. 
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Complexity can be interpreted in two ways: as the size m (i.e., diversity) of 
the ecosystem, or as its connectivity C. 

As either increases, the “equilibrium ecosystem” loses its stability. 

This conclusion is easily understood qualitatively. Since the eigenvalues λB 
of B satisfy 

B�x = λB�x 

and, by definition, 
I�x = �x, 

then, since A = B − I, 
A�x = (λB − 1)�x, 

i.e., the eigenvalues of A are given by 

λ = λB − 1. 

The essential statement, therefore, is that as B becomes large in dimension, 
as the fraction of its non-zero elements increases, and/or as the magnitude of 
its elements increase, eventually the real part of one of its eigenvalues exceeds 
unity, so that A becomes is unstable. 

8.5 Discrete logistic model 

Unfinished—no more time. Come back next year! 

Return now to the logistic model (56) for a single population: 

dN N 
dt 

= rN 1 − 
K

. 

Now imagine that we care only about the population changes from, say, year 
to year, and we take Nj to be the population in the jth year. 

Then the differential equation becomes the difference equation 

Nj
Nj+1 − Nj = rNj 1 − 

K 
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or  
Nj+1 = (1 + r)Nj − 

r
Nj 

2 . 
K 

Now rescale the populations to the new variable 

r/K 
xj+1 = Nj,

1 + r 

which yields 
(1 + r)xj = (1 + r)2 xj − (1 + r)2 x2 

j . 

Setting 
4µ = 1 + r 

we then obtain the discrete logistic equation 

xj+1 = 4µxj(1 − xj). 

8.5.1 Fixed points and stability 

8.5.2 Period doubling 

8.5.3 Chaos 
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