IIII Transit Service Reliability

- Impacts of unreliability
- Causes of unreliability
- Reliability Metrics
- Real-Time Control Strategies

Impacts of Unreliability

- Passenger impacts
 - Longer wait times
 - Need for trip time reliability buffer
 - Higher loads (uncomfortable and slow rides)
- Agency impacts
 - Increased costs
 - Reduced ridership and revenue
 - Reduced operator morale
 - Public and political problem
 - Reduced effective capacity

1.258J 11.541J ESD 228J Lecture 20, Spring 2017 1.258J 11.541J ESD 228J Lecture 20, Spring 2017

Causes of Unreliability

- External
 - Traffic and traffic signals
 - Demand
 - Incidents (e.g. medical emergency)
- Internal
 - Equipment failure
 - Insufficient resources
 - Poor operations planning
 - Lack of supervision and control
 - Human driver behavior

IIIII Transit Service Delivery as a Business Process

Source: "Diagnosis and Assessment of Operations Control Interventions: Framework and Applications to a High Frequency Metro Line." MST Thesis, André Carrel; MIT, 2009.

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Data-Driven Reliability Management

- Automated Data Collection Systems (AVL, AFC, APC) make it easier to measure reliability
- Automated scheduling systems make it easier to revise schedules
- Improved communications makes it easier to adjust operations plans in real time

IIII Reliability as a Performance Measure

- Reliability is not the only service dimension of value
 Speed/trip time
 - Productivity

5

7

- Reliability means different things
 - To different customers
 - On different services
- A single measure of effectiveness focused on reliability may lead to poor decisions

... but ...

1.258J 11.541J ESD.226J

Lecture 20. Spring 2017

• We do need to measure performance with respect to reliability

1.258J 11.541J ESD.226J

Lecture 20, Spring 2017

Reliability on Low Frequency Service

Most customers time their arrival at stops/stations based on expected service departure times (e.g. schedule)

- On-time performance is critical, for example:
 - 1 minute early to 5 minutes late
 - \circ $\,$ 0 minutes early to 3 minutes late
 - $\circ~$ 0 minutes early to 1 minutes late
- Little interaction between successive vehicles
- Real-time information is changing this
 - Poorly understood
 - In what manner?
 - To what extent?
 - What are the implications?

Reliability on High Frequency Service

- Most customers do not time their arrival at stops with service departures
- Expected wait time depends on mean and variance of headways
- Punctuality is not so critical
- Extensive interaction between successive vehicles:
 - $\circ \quad \text{Vehicle bunching} \\$
 - Long gaps

... but ...

- High frequency routes can have branches and short route variants, so many customers may still behave like those on low frequency routes
- Schedule control is much easier than headway control

Reliability Buffer Time

High Frequency Service, Closed Fare System

- use tap-in and tap-out times to measure actual station-station journey times
- characterize journey time distributions measures such as Reliability Buffer Time (at O-D level)

11

Reliability Metrics - Rail

• Aggregate to line level by distinguishing between *normal* and *incident days*

David Uniman, MST thesis, MIT 2009. "Service Reliability Measurement Framework using Smart Card Data: Application to the London Underground."

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 12841 11.541J EBD 228J Ledure 20.5 Series 2017.

Reliability Metrics - Rail

Low-Frequency Service, Closed Fare System

• compare actual journey times with scheduled times

Michael Frumin, MST thesis, 2010 "Automatic Data for Applied Railway Management: Passenger Demand, Service Quality Measurement, and Tactical Planning on the London Overground Network."

In contracted service delivery context, need to distinguish between:

- 1. Contractor performance: measure against contracted service expectations
- 2. Performance as seen by passenger

If service is unreliable, *the passenger* doesn't care whether the problem was caused by traffic or poor operator behavior, but *the authority* must be sure which caused the problem.

Reliability Metrics - Bus

Challenge to measure passenger journey time because

- (typically) no tap-off, just tap-on
- tap-on occurs after wait at stop, but wait is an important part of journey time

Strategy to use

- Infer destinations using trip-chaining (ODX)
- Use AVL to estimate
 - average passenger wait time
 - based on assumed passenger arrival process
 - o actual in-vehicle time

1.258J 11.541J ESD.226J Lecture 20, Spring 2017

13

IIII Preventive Strategies

- Reserve fleet of drivers and vehicles
- Exclusive bus lanes
- Traffic signal priority
- Route design strategies: shorter routes, less stops
- Schedule planning
- Supervision

Reliability Management Strategies

Preventive

- Maintain normal service; robust operating plans
- Reduce probability of problems occurring

Corrective

- Return to normal service once problems arise
- Minimize impact on passengers
 - 1.258J 11.541J ESD.226J Lecture 20, Spring 2017
- Impact of Schedules

Critical decisions

- Cycle time/half cycle time: impacts cost and terminal departure reliability
 - Allocation of time between running and recovery time
- Time Points: impacts cycle time and/or recovery time, reliability along route and passenger trip time
 - Number and location
 - \circ $\,$ Schedule at each time point

Impact of Schedules

Traditional scheduling approach

- Set half cycle time so that 90-95% of vehicle departures are on time
- Set time point scheduled times at 65 percentile of observed running times

... but ...

- This doesn't recognize the feedback between scheduled time and operating speed
- It is not sensitive to the ratio of passengers on board versus passengers waiting at time point and further down route

1.258J 11.541J ESD.226J

Lecture 20, Spring 2017

Corrective Strategies

- Supervision, operations control
- · Holding: schedule-based vs. headway-based
- Transit Signal Priority
- Deadheading
- Expressing
- Short-turning
- Use of reserve vehicles

major disruption strategies for high-frequency service

17	1.258J 11.541J ESD.226J Lecture 20, Spring 2017

Holding Strategies

- Schedule adherence
- Scheduled headway adherence
- Threshold headway adherence
- Headway regularity (even headways)
- Optimization (rolling horizon)
 - Models passenger costs explicitly
 - Trade-off between waiting time and in-vehicle time
 - $\circ \quad \text{Reduces excessive holding} \\$
 - Avoids holding full vehicles
 - Prevents unnecessary reduction of effective capacity
 - Potentially considers operating constraints
 - Excessively late drivers

Rolling Horizon Optimization: Static vs. Dynamic Inputs

11117 **Optimal Holding with Dynamics**

GE Sánchez-Martínez, HN Koutsopoulos, NHM Wilson. Real-time control for high-frequency transit with dynamics. Transportation Research Part B: Methodological 83, 1-19, 2016.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: G. E. Sanchez-Martinez, H. N. Koutsopoulos, and N. H. M. Wilson, "Real-time control for high-frequency transit with dynamics." Transportation Research Part B: Methodological 83 (2016): 1-19. 21

Plii **Optimal Holding with Dynamics**

$\begin{array}{c} \underset{h_{v,s}}{\text{minimize}} \\ \downarrow_{v \in V} \forall_{s \in S} \end{array}$	$\frac{W_V + \theta_S W_S}{P}$
subject to	vehicle movement constraints
	passenger activity constraints
	$0 \le h_{v,s} \le h_s^{\max} \forall v \in V \forall s \in S$

	static	dynamic
running times	$a_{v,s} = d_{v,s-1} + r_{s-1}$	$a_{v,s} = d_{v,s-1} + r_{s-1}(d_{v,s-1})$
demand	$\beta_{v,s_b,s_a} = \lambda_{s_b,s_a} (d_{v,s_b} - d_{v-1,s_b})$	$\beta_{v,s_b,s_a} = \int_{d_{v-1,s_b}}^{a_{v,s_b}} \lambda_{s_b,s_a}(t) \mathrm{d}t$

GE Sánchez-Martínez, HN Koutsopoulos, NHM Wilson. Real-time control for high-frequency transit with dynamics. Transportation Research Part B: Methodological 83, 1-19, 2016.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: G. E. Sanchez-Martinez, H. N. Koutsopoulos, and N. H. M. Wilson, "Real-time control for high-frequency transit with dynamics." Transportation Research Part B: Methodological 83 (2016): 1-19.

> 1 258 J 11 541 J ESD 226 J Lecture 20, Spring 201

Optimal Holding with Dynamics

GE Sánchez-Martínez, HN Koutsopoulos, NHM Wilson. Real-time control for high-frequency transit with dynamics. Transportation Research Part B: Methodological 83, 1-19, 2016.

IIIii **Rail Operations Control: Decision Factors**

- These factors can trigger service control interventions or place constraints on ٠ interventions performed for other reasons
- Conflicts between objectives are frequent .
- Service control can cause unreliability! ٠
- How can we best coordinate and integrate these objectives and constraints? •

"Diagnosis and Assessment of Operations Control Interventions: Framework and Applications to a High Frequency Metro Line." MST Thesis, André Carrel: MIT, 2009.

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Three Levels of Control Problems

- Routine disturbances few minutes deviation from schedule
 - speed adjustment
 - dwell time adjustment (selective holding)
 - terminal recovery
- Short-term disruptions 5-30 minute blockages
 - holding
 - short-turning
 - expressing
- Longer-term disruptions >30 minute blockages
 - \circ single-track reverse direction operations
 - replacement bus service around blockage

IIII Disruption Response Strategies

1.258J 11.541J ESD.226J Lecture 20, Spring 2017

State of Practice in Operations Control

- Advances in train control systems help minimize impacts of small incidents
- Major disruptions still handled in individual manner based on judgment and experience
- Little effective decision support for controllers
- Simplistic view of objectives and constraints in model formulation
- · Substantial opportunities for more effective models

MBTA Green Line Headway Dispatching

Current Operations

 Trains dispatched by on-site inspectors following the schedule

Headway Dispatching Pilot

- Decision support tool delivered on touchscreen tablet
- Even headway dispatching, with constraints
- Contains vehicle and driver information

JJ Fabian. Improving Transit Reliability: A Case Study of the MBTA Green Line Through Simulation and Field Experiments. MST Thesis, MIT, 2017.

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

1.258J 11.541J ESD.226J Lecture 20, Spring 2017

25

MBTA Green Line Headway Dispatching

9::	34:55			Rive	erside N	A 154	Shizelin .	O Current	Ов	• 6	0	A Delay
Cor	Time	Pura	Arrivals	Nama	Nota Edi	• Car	Time	Trin	Depa	rtures	Namo	Note Edi
			Daude	Hame	* *			, <u></u>		bauge	A A A	Note Eu
829	9:19:20	543	$\mu_{\rm E}^{\rm c}/\mu$	HISP-Darg/	e 📀	675	9:29:10	(9:27)		Wig.	1.4 ples Piele	• @
675 T	9:19:20	544	8. # #	were and	r 🥝	829 T	9:29:10	(9:27)	518	4.At	460.0.5	
							9:36:40	(9:34^)	1420	in the	5-64-418	
						т	9:36:40	(9:34^)	1417	1994	14 44 44	
861	9:33:49	1420	S.Con	-	4 Ø		9:44:40	(9:41)	522	(GLT)	STATISTICS OF	
821 T	9:33:49	1417	+ the	10-33	- 0	т	9:44:40	(9:41)	523	15-28	18 811 1110	
642	9:41:05	522	H6374	factors of	• 🔷		9:52:40	(9:49)	1424	with S ^M	BHD Harris	
841 T	9:41:05	523	sife's	-	e 🛛 📀	т	9:52:40	(9:49)	1423	Wie	Shine Tropy	
843	9.42.37		Weight P				10.00.4	n		-	ALL MARY	
	Yard 1	1 WB	cars	22 EB (cars 15	Prev	9.6m Scl	ned 7.5 n	n Rec	omm	end 7.8n	1

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

JJ Fabian. Improving Transit Reliability: A Case Study of the MBTA Green Line Through Simulation and Field Experiments. MST Thesis, MIT, 2017.

.258J	1	1.54	1J	ESE	D.226J	
Lectur	e	20	Snr	ina :	2017	

MBTA Green Line Headway Dispatching

JJ Fabian. Improving Transit Reliability: A Case Study of the MBTA Green Line Through Simulation and Field Experiments. MST Thesis, MIT, 2017.

> 1.258J 11.541J ESD.226J Lecture 20. Spring 2017

30

MBTA Green Line Headway Dispatching

Adherence to tablet recommendation

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

JJ Fabian. Improving Transit Reliability: A Case Study of the MBTA Green Line Through Simulation and Field Experiments. MST Thesis, MIT, 2017.

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.