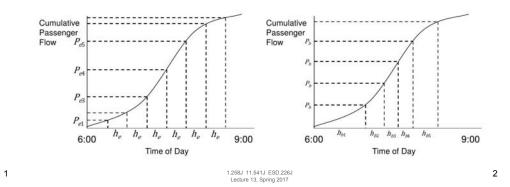
Vehicle Scheduling


Outline

- Timetable Development
- Fleet Size Calculation
- Vehicle Scheduling

Timetable Development

Translating frequency into timetable by specifying headways as:

- equal appropriate if demand is uniformly distributed across period
- balanced load appropriate if there is substantial variation in demand over period
 - e.g. peak of the peak
- clockface or not do headways repeat every hour?

1.258J 11.541J ESD.226J Lecture 13, Spring 2017

Timetable Development

If we have *N* departures in the peak period:

equal headway solution

$$H = \frac{\text{Peak Period Duration}}{N}$$

balanced load solution

$$Load = \frac{\text{Total Passenger Flow}}{N}$$

More vehicles might be required for a balanced load solution.

Fleet Size Required

Salzborn's Fleet Size Theorem

Given:

l(k, t, s) = # of departures from terminal k by time t following schedule s

a(k, t, s) = # of arrivals at terminal k by time t following schedule s

and:

d(k,t,s) = l(k,t,s) - a(k,t,s)

deficit function at terminal k at time t following schedule s

Assumptions

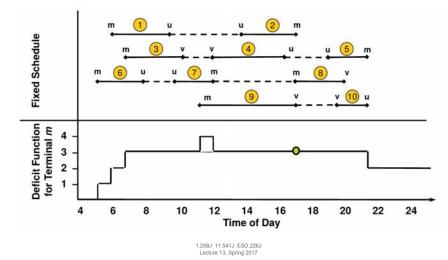
- no trip shifting
- no deadheading (to balance deficit among terminals)

Fleet Size Required

Salzborn's Fleet Size Theorem

Then:

N(s), the minimum size fleet to serve schedule s, is given by:


$$N(s) = \sum_{k \in K} \max_{t} (d(k, t, s))$$

Where K is the number of terminals.

Fleet Size Required

The deficit function, or minimum required fleet size, may be reduced by:

- shifting departure and/or arrival times
- adding deadhead trips between terminals

Vehicle Scheduling Problem

Objective

• Define vehicle blocks (sequences of revenue and non-revenue activities for each vehicle) covering all trips so as to:

1.258J 11.541J ESD.226J

Lecture 13, Spring 2017

- $\circ \quad \text{minimize fleet size} \\$
- \circ $\$ minimize non-revenue time and mileage

Observation

 These are proxies for cost, but a large portion of cost will depend on crew duties which are unknown at this stage of solution.

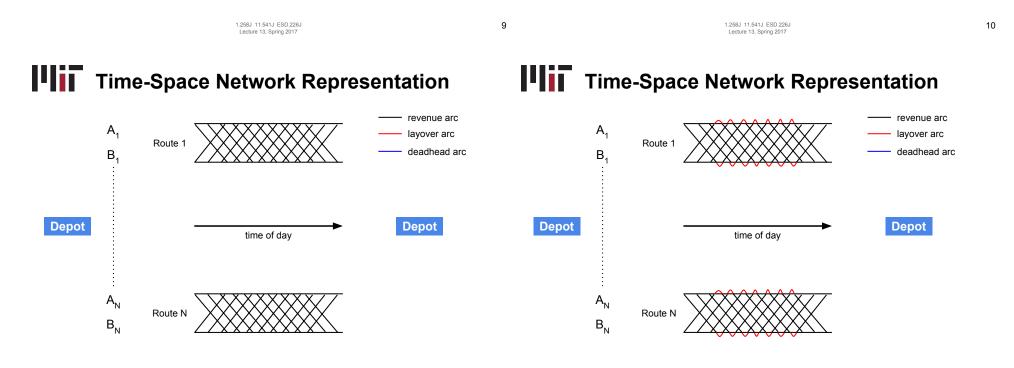
Vehicle Scheduling Problem

Input

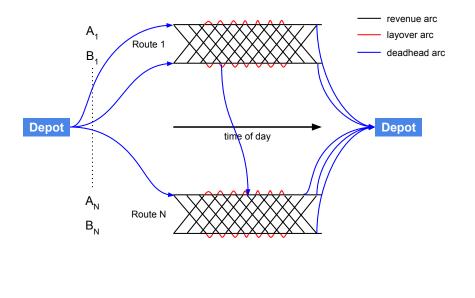
5

- A set of vehicle revenue trips to be operated, each characterized by
 - starting point and time
 - $\circ \quad$ ending point and time
- Possible *layover arcs* between the end of a trip and the start of a (later) trip at the same location
- Possible deadhead arcs connecting
 - depot(s) to trip starting points
 - trip ending points to depot(s)
 - \circ $\$ trip ending points to trip starting at a different point

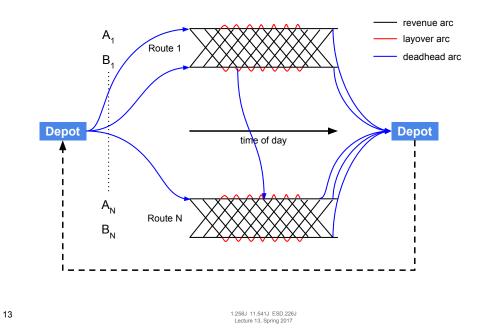
Vehicle Scheduling Problem


Vehicle Scheduling Problem

Observations


- there are many feasible but unattractive deadhead and layover arcs, so it is best to generate only plausible non-revenue arcs
- layover time affects service reliability, so set minimum layover (recovery) time

Variations


- each vehicle restricted to a single line vs. interlining permitted
- single depot vs. multi-depot
- vehicle fleet size constrained at depot level
- routes (trips) assigned to specific depot
- multiple vehicle types

Time-Space Network Representation

Time-Space Network Representation

Mathematical Modelling: Network Flows

1.258J 11.541J ESD.226J

Lecture 13, Spring 2017

- The vehicle scheduling problem can be modelled as a *minimum cost network flow problem*, with arcs representing trips.
- Arcs have lower and upper bound constraints on flow
 - revenue arc
 - layover arc
 - $\circ \quad \text{deadhead arc} \quad$
- Arcs have cost
 - revenue arc
 - layover arc
 - deadhead arc

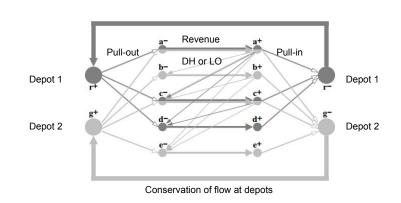
Mathematical Modelling: Network Flows

- The vehicle scheduling problem can be modelled as a *minimum cost network flow problem*, with arcs representing trips.
- Arcs have lower and upper bound constraints on flow

• revenue arc
$$I = 1$$
 $u = 1$

- layover arc I = 0 u = 1
- \circ deadhead arc I = 0 u = 1
- Arcs have cost

0


- revenue arc cost irrelevant
 - layover arc driver cost of extra layover time
- deadhead arc driver & vehicle cost of deadhead

Mathematical Modelling: Network Flows

1.258J 11.541J ESD.226J Lecture 13, Spring 2017

Vehicle Scheduling Problem (VSP)

- find a set of feasible vehicle blocks such that 0
 - each trip in the timetable is covered exactly once
 - total cost is minimized
 - layover arcs
 - deadhead arcs
 - maximum block length
 - flow conservation
- significant cost reductions with interlining and trip shifting heuristics
- Single Depot Vehicle Scheduling Problem (SDVSP)
- for smaller agencies
- solvable in polynomial time (minimum cost network flow)
- Multidepot Vehicle Scheduling Problem (MDVSP)
 - for large agencies 0
 - (integer multicommodity flow) 0
 - NP-hard (trip-depot compatibility constraints) 0
 - exact algorithms exist, but heuristics are used in practice 0
 - SDVSP used to find suboptimal solution, or as a sub-problem 0

Network Representation (MDVPS)

Löbel, Andreas. "Solving large-scale multiple-depot vehicle scheduling problems." In Computer-aided transit scheduling, pp. 193-220. Springer Berlin Heidelberg, 1999.

© Springer International Publishing AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

> 1.258J 11.541J ESD.226J Lecture 13, Spring 2017

Heuristic Approaches

1) Define compatible trips at same terminal k such that trips i and *i* are compatible if and only if:

1.258J 11.541J ESD.226J

Lecture 13, Spring 2017

 $M_{k} < t_{si} - t_{ei} < 2 D_{k}$

where

0

0

- 0 = starting time for trip j
- ending time for trip i 0 =
 - = minimum recovery/layover time at terminal k M.
 - D. deadhead time from terminal k to depot
- Apply restricted first-in-first-out rules at each terminal Step a) Start with (next) earliest arrival at terminal; if none, go to step (d) Step b) Link to earliest compatible trip departure; if none, return vehicle to depot and return to step (a)
 - Step c) Check vehicle block length against constraint:
 - i) if constraining, return vehicle to depot and return to step (a)
 - ii) otherwise, return to step (b) with new trip arrival time
 - Step d) Serve all remaining unlinked departures from depot

Single Route Scheduling Practice

Α

Central City

В

Results of earlier planning and scheduling analysis:

	AM Peak Period	Base Period
	6:00 - 9:00	after 9:00
Headways	20 min	30 min
Scheduled Trip Time $A \rightarrow B$ or $B \rightarrow A$	40 min	35 min
Minimum Layover Time	10 min	10 min

1.258J 11.541J ESD.226J

Lecture 13, Spring 2017

Dominant direction of travel in AM Peak is $A \rightarrow B$

18

Timetable and Vehicle Block Development

Depart A	Arrive B
6:00	6:40
6:20	7:00
6:40	7:20
7:00	7:40
7:20	8:00
7:40	8:20
8:00	8:40
8:20	9:00
8:40	9:20
9:00	9:35
9:30	10:05
10:00	10:35
10:30	11:05
11:00	11:35

Depart A	Arrive B	Depart B	Arrive A
6:00	6:40	6:50	7:30
6:20	7:00	7:10	7:50
6:40	7:20	7:30	8:10
7:00	7:40	7:50	8:30
7:20	8:00	8:10	8:50
7:40	8:20	8:30	9:10
8:00	8:40	8:50	9:30
8:20	9:00	9:15	9:50
8:40	9:20		
9:00	9:35	9:45	10:20
9:30	10:05	10:15	10:50
10:00	10:35	10:45	11:20
10:30	11:05	11:15	11:50
11:00	11:35	11:45	12:20

1.258J 11.541J ESD.226J Lecture 13, Spring 2017 21

1.258J 11.541J ESD.226J Lecture 13, Spring 2017

Timetable and Vehicle Block Development

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

x = pull out (from depot) y = pull in (back to depot)

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

22

1.258J 11.541J ESD.226J Lecture 13, Spring 2017

Timetable and Vehicle Block Development

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

1.258J 11.541J ESD.226J

Lecture 13, Spring 2017

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

x = pull out (from depot) y = pull in (back to depot)

1.258J 11.541J ESD.226J Lecture 13, Spring 2017

Timetable and Vehicle Block Development

25

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
2x	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2у	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

v = p	ull in (book to d	lonot)

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
2x	6:20	7:00	7:10	7:50
Зx	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2у	8:00	8:40	8:50	9:30
3	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

x = pull out (from depot) y = pull in (back to depot)

x = pull out (from depot) y = pull in (back to depot)

Timetable and Vehicle Block Development

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
2x	6:20	7:00	7:10	7:50
Зx	6:40	7:20	7:30	8:10
4x	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2у	8:00	8:40	8:50	9:30
3	8:20	9:00	9:15	9:50
4y	8:40	9:20		
	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3	10:00	10:35	10:45	11:20
	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

Veh #	Depart A	Arrive B	Depart B	Arrive A
1x	6:00	6:40	6:50	7:30
2x	6:20	7:00	7:10	7:50
3x	6:40	7:20	7:30	8:10
4x	7:00	7:40	7:50	8:30
5x	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
2у	8:00	8:40	8:50	9:30
3	8:20	9:00	9:15	9:50
4y	8:40	9:20		
5	9:00	9:35	9:45	10:20
1	9:30	10:05	10:15	10:50
3	10:00	10:35	10:45	11:20
5	10:30	11:05	11:15	11:50
1	11:00	11:35	11:45	12:20

x = pull out (from depot) y = pull in (back to depot)

x = pull out (from depot) y = pull in (back to depot)

1.258J 11.541J ESD.226J

Lecture 13, Spring 2017

30

1.258J 11.541J ESD.226J Lecture 13, Spring 2017 29

Timetable and Vehicle Block Development

Block 1: Depot - A (6:00) - B (6:50) - A (7:40) - B (8:30) - A (9:30) - B (10:15) - A (11:00) - B (11:45) - . . .

Block 2: Depot - A (6:20) - B (7:10) - A (8:00) - B (8:50) - Depot

Block 3: Depot - A (6:40) - B (7:30) - A (8:20) - B (9:15) - A (10:00) - B (10:45) -

Block 4: Depot - A (7:00) - B (7:50) - A (8:40) - Depot

. . .

Block 5: Depot - A (7:20) - B (8:10) - A (9:00) - B (9:45) - A (10:30) - B (11:15) -

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.