# Modal Capacities and Costs

2. World-Wide Status of Urban Rail Systems

| <b>Phi</b> r | US Transit Mode Performance Measures |
|--------------|--------------------------------------|
|              | 2013                                 |

|                                               | Bus      | Heavy Rail | Light Rail | Commuter Rail | Paratransit |
|-----------------------------------------------|----------|------------|------------|---------------|-------------|
| Operating Expenses (\$ millions)              | 20,447.4 | 8,173.1    | 1,718.7    | 5,370.8       | 5,157.1     |
| Annual Unlinked Passenger Trips (millions)    | 5,330.0  | 3,817.0    | 510.0      | 480.0         | 223.0       |
| Annual Passenger Miles (millions)             | 22,150.0 | 18,005.0   | 2,482.0    | 11,862.0      | 2,171.0     |
| Annual Revenue Vehicle Miles (RVM) (millions) | 2,077.8  | 654.5      | 104.0      | 331.1         | 1,365.4     |
| Annual Revenue Vehicle Hours (RVH) (millions) | 161.1    | 32.6       | 7.1        | 10.2          | 92.2        |
| Op. Cost/RVH (\$)                             | 126.9    | 250.7      | 242.1      | 526.5         | 55.9        |
| Op. Cost/RVM (\$)                             | 9.8      | 12.5       | 16.5       | 16.2          | 3.8         |
| Op. Cost/Unlinked Pass Trip (\$)              | 3.8      | 2.1        | 3.4        | 11.2          | 23.1        |
| Op. Cost/Pass Mile (\$)                       | 0.9      | 0.5        | 0.7        | 0.5           | 2.4         |
| Unl. Pass Trips/ RVH                          | 33.1     | 117.1      | 71.8       | 47.1          | 2.4         |
| Pass Miles/RVH                                | 137.5    | 552.3      | 349.6      | 1162.9        | 23.5        |
| Mean Trip Length (miles)                      | 4.2      | 4.7        | 4.9        | 24.7          | 9.7         |
| Mean Pass Load                                | 10.7     | 27.5       | 23.9       | 35.8          | 1.6         |
| Mean Operating Speed (mph)                    | 12.9     | 20.1       | 14.6       | 32.5          | 14.8        |

Source: APTA Fact Book 2015

© American Public Transportation Association. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

1.258J 11.541J ESD.226J Lecture 6, Spring 2017

## Simple Capacity Analysis

#### Given

θ

1

Then

1

- Ρ = population density at CBD
- rate of decrease of population density with distance from CBD dP =

 $L^2\theta\left(\frac{P_c}{2} - \frac{\mathrm{d}PL}{3}\right)$ 

- angle served by corridor =
- = distance from CBD
- corridor length =
- number of one-way trips per person per day =
- share of trips inbound to CBD С =
- m = transit market share for CBD-bound trips
- = share of CBD-bound transit trips in peak hour р

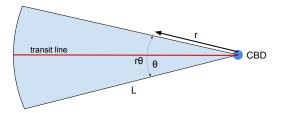
Population in Corridor =  $\int_{0}^{L} r\theta \left(P_{c} - dPr\right) dr$ 

3

1.258J 11.541J ESD.226J Lecture 6, Spring 2017

4. Operating Costs

3. Capital Costs


1. Simple Capacity Analysis

1.258J 11.541J ESD.226J Lecture 6, Spring 2017

## **I** Simple Capacity Analysis

### Question

Given a pie-shaped sector into the CBD served by a single transit line, what will be the peak passenger flow entering the CBD?



# Simple Capacity Analysis

Peak Passenger Flow = 
$$L^2 \theta \left(\frac{P_c}{2} - \frac{\mathrm{d}PL}{3}\right) tcmp$$

Maximum access distance to transit line =  $\frac{L\theta}{2}$ 

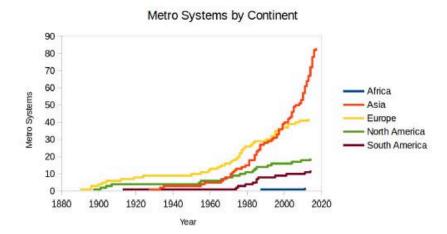
Examples:

| Pc     | dP    | θ             | L  | t   | C   | m   | Р    | Required<br>Capacity | Max<br>Access |
|--------|-------|---------------|----|-----|-----|-----|------|----------------------|---------------|
| 10,000 | 800   | 2π <b>/</b> 9 | 10 | 2.5 | 0.2 | 0.5 | 0.25 | 10,000               | 3.5           |
| 20,000 | 1,600 | 2π <b>/</b> 9 | 10 | 1.5 | 0.3 | 0.8 | 0.25 | 30,000               | 3.5           |

1.258J 11.541J ESD.226J Lecture 6, Spring 2017

## MBTA Rail Lines Peak Hour Volumes

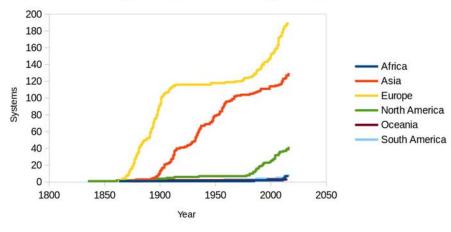
| Red Line    | Braintree branch | 6,700 |
|-------------|------------------|-------|
|             | Ashmont branch   | 3,500 |
|             | Cambridge        | 9,700 |
| Orange Line | North            | 8,300 |
|             | Southwest        | 7,000 |
| Blue Line   |                  | 6,200 |
| Green Line  | в                | 1,800 |
|             | С                | 1,300 |
|             | D                | 1,800 |
|             | E                | 1,600 |
|             | Central Subway   | 8,000 |


### Theoretical Capacities

#### Rail

- 10 car trains
- 200 pass/car
- 2-minute headway
- 60,000 pass/hr
- Bus
  - 70 pass/bus
  - 30-second headways
  - 8,400 pass/hr
- BRT
  - 200 pass/bus
  - 20 second headways
  - 36,000 pass/hr
- Light Rail
  - 2-car trains
  - o 150 pass/car
  - 1-minute headway
  - 18,000 pass/hr

1.258J 11.541J E8D.226J Lecture 6, Spring 2017


## Worldwide Urban Rail Systems



5

# Worldwide Urban Rail Systems

Light Rail and Street Cars by Continent



### Capital Costs

### In US

• \$18.2 billion in capital costs in 2013

By type

- 25% for vehicles
- 59% for infrastructure and facilities
- 16% other

By mode

- 25% for bus projects
- 34% for heavy rail projects
- 17% for commuter rail projects
- 19% for light rail projects
- 5% other (mostly paratransit)

1.258J 11.541J ESD.226J Lecture 6, Spring 2017

# Capital Costs by Type and Mode

|                                       | Bus | Heavy Rail | Commuter<br>Rail | Light Rail |
|---------------------------------------|-----|------------|------------------|------------|
| Vehicles                              | 52% | 10%        | 17%              | 7%         |
| Infrastructure, facilities, and other | 48% | 90%        | 83%              | 93%        |
| Total (billion USD)                   | 4.5 | 6.2        | 3.0              | 3.5        |

- Infrastructure, facilities and systems capital costs dominate for rail modes
- Vehicular capital costs represent about half of all capital costs for non-rail modes

## Infrastructure Costs

### **Key Factors**

- Type of construction
  - at grade (least expensive)
  - elevated
  - subway
    - shallow tunnel
    - deep tunnel (most expensive)
- Land acquisition and clearance (relocation)
- Number, size, complexity, and length of stations
- Systems complexity

9

1.258J 11.541J ESD.226J

Lecture 6, Spring 2017

## Typical Capital Costs: Heavy Rail

|                                                                                                                                                   | System cost<br>(includes stations and vehicles)<br>(\$ billion)* | Cost/km<br>(\$ million) |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|
| Tren Urbano: new system (2002)<br>Phase I: 17 km, 16 stations<br>50% at grade, 40% elevated, 10% subway                                           | 2.0                                                              | 118                     |
| MBTA Red Line<br>Alewife Station Extension (1984)<br>5 km, 4 stations: 100% subway                                                                | 0.6                                                              | 120                     |
| LA MTA: new system (late 1980s)<br>7 km: subway                                                                                                   | 1.2                                                              | 180                     |
| WMATA: new system<br>(late 1970s-early 1990s)<br>Multiple phases 100 km, 70 stations<br>(partial system)<br>Mix of subway, elevated, and at grade | 6.4                                                              | 60                      |

\* Costs are expressed in current USD, not adjusted for inflation Kain (mid-1990s) estimate of average heavy rail capital costs: \$80 million/km

> 1.258J 11.541J ESD.226J Lecture 6, Spring 2017

## Typical Capital Costs: Busways

|                                                         | System cost<br>(includes stations)<br>(\$ million) | Cost/km<br>(\$ million) |
|---------------------------------------------------------|----------------------------------------------------|-------------------------|
| MBTA South Boston Transitway (2002)<br>2 km, bus tunnel | 606 **                                             | 303                     |
| Bogotá Transmilenio (2001)<br>36 km, at grade           | 200                                                | 5                       |
| Seattle (mid 1980s)<br>2 km, bus tunnel                 | 319                                                | 160                     |
| Pittsburgh (mid 1980s)<br>10 km, at grade               | 113                                                | 11                      |
| Houston (early 1980s)<br>35 km, at grade                | 290                                                | 8                       |

\* Costs are expressed in current USD, not adjusted for inflation

\*\* Also includes vehicle cost



|                                             | System cost<br>(includes stations and vehicles)<br>(\$ million)* | Cost/km<br>(\$ million) |
|---------------------------------------------|------------------------------------------------------------------|-------------------------|
| LA MTA (late 1980s)<br>30 km, at grade      | 690                                                              | 23                      |
| Buffalo (late 1980s)<br>10 km, subway       | 529                                                              | 53                      |
| Santa Clara (late 1980s)<br>30 km, at grade | 498                                                              | 16                      |
| Portland (mid 1980s)<br>24 km, at grade     | 214                                                              | 9                       |

\* Costs are expressed in current USD, not adjusted for inflation Kain (mid-1990s) estimate of average LRT capital costs: \$25 million/km

> 1.258J 11.541J ESD.226J Lecture 6, Spring 2017

### Vehicle Capital Costs: Rail

- Generic Cost: \$2.0-2.5 million per car
- Recent MBTA orders
  - CNR (2014): \$2.0 million per car, 284 cars for Orange and Red Line
  - Siemens (2010): \$2.3 million per car, 94 Blue Line cars
  - Hyundai Rotem (2008): \$2.3 million per car, 75 commuter rail cars
  - Breda (2004): \$2.0 million per car, 95 light rail cars
  - Motive Power (2010): \$5.7 million per locomotive, 20 locomotives

13

|  |  | Typical | Capital | Costs | per | Passenger Mile |
|--|--|---------|---------|-------|-----|----------------|
|--|--|---------|---------|-------|-----|----------------|

|                                  | Generic Cost (million USD) | MBTA Recent Orders                   |
|----------------------------------|----------------------------|--------------------------------------|
| Standard 40 ft. bus (CNG)        | 0.30-0.35                  | NABI \$0.32 M, 300 vehicles, 2004    |
| Standard 40 ft. trolley          | 1.0                        | Neoplan \$0.943 M, 28 vehicles, 2004 |
| Articulated 60 ft. bus (CNG)     | 0.5-0.7                    | Neoplan \$0.614 M, 44 vehicles, 2003 |
| Articulated dual-mode 60 ft. bus |                            | Neoplan \$1.6 M, 32 vehicles, 2004   |

### For all modes

- Vehicle cost per passenger mile: \$0.05-0.10
- Infrastructure cost per passenger mile: \$0.01-1.00

1.258J 11.541J ESD.226J Lecture 6, Spring 2017 17

1.258J 11.541J ESD.226J Lecture 6, Spring 2017

# Operating Costs

- In US
  - \$42.2 billion in operating costs in 2013
- By type
  - 44% for vehicle operations
  - 16% for vehicle maintenance
  - 11% for non-vehicle maintenance
  - 16% for administration
  - 14% for purchased transportation

#### • By mode

- 49% for buses
- 19% for heavy rail
- 13% for commuter rail
- 4% for light rail
- 12% for paratransit
- $\circ$  3% for other modes

## Productivity

Employees per Revenue Vehicle (U.S., Industry-wide, 2013)

| Paratransit | Bus | Commuter Rail | Heavy Rail | Light Rail | Total |
|-------------|-----|---------------|------------|------------|-------|
| 1.6         | 3.5 | 4.7           | 5.5        | 6.8        | 2.7   |

Bus/rail comparison for NYCT (Pushkarev and Zupan in 1970s), employees/veh

|      | Veh. Ops. | Veh. Maint. | Manage &<br>Control | Fare Coll. | Way Maint. | Total |
|------|-----------|-------------|---------------------|------------|------------|-------|
| Bus  | 2.2       | 0.8         | 0.5                 |            |            | 3.5   |
| Rail | 1.0       | 0.8         | 0.8                 | 0.6        | 1.2        | 4.4   |

Metro productivity is 3-4 times bus productivity measured in passenger-miles per revenue vehicle hour.

MIT OpenCourseWare <a href="https://ocw.mit.edu/">https://ocw.mit.edu/</a>

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.