

1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lecture 3

Bipartite graphs

- \blacktriangleright A graph G(V, E) is called bipartite when
 - \Rightarrow V can be partitioned in two disjoint sets, say V_1 and V_2 ; and
 - \Rightarrow Each edge in E has one endpoint in V_1 , the other in V_2

- ▶ Useful to represent e.g., membership or affiliation networks
 - \Rightarrow Nodes in V_1 could be people, nodes in V_2 clubs
 - \Rightarrow Associated graph $G(V_1, E_1)$ joins members of same club

Adjacency matrix

- ▶ Algebraic graph theory deals with matrix representations of graphs
 - ⇒ Leverage algebra to 'visualize' graphs as if being plotted
- ightharpoonup Q: How can we capture the connectivity of G(V, E) in a matrix?
- ▶ A: Binary, symmetric adjacency matrix $\mathbf{A} \in \{0,1\}^{|V| \times |V|}$, with entries

$$A_{ij} = \begin{cases} 1, & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$
.

- \Rightarrow Note that vertices are indexed with integers $1, \ldots, |V|$
- ▶ In words, **A** is one for those entries whose row-column indices denote vertices in *V* joined by an edge in *E*, and is zero otherwise

Adjacency matrix examples

Examples for undirected graphs and digraphs

$$\mathbf{A}_{u} = \left(egin{array}{cccc} 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \end{array}
ight), \quad \mathbf{A}_{d} = \left(egin{array}{cccc} 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \end{array}
ight)$$

▶ If the graph is weighted, store the (i,j) weight instead of 1

Adjacency matrix properties

- ► Adjacency matrix useful to store graph structure.
 - \Rightarrow Also, operations on **A** yield useful information about G
- ▶ Degrees: Row-wise sums give vertex degrees, i.e., $\sum_{i=1}^{|V|} A_{ij} = d_i$
- ▶ For digraphs **A** is not symmetric and row-, colum-wise sums differ

$$\sum_{j=1}^{|V|} A_{ij} = d_i^{out}, \qquad \sum_{i=1}^{|V|} A_{ij} = d_j^{in}$$

Spectrum: G is d-regular if and only if $\mathbf{1}$ is an eigenvector of \mathbf{A} , i.e.,

$$A1 = d1$$

Walks, Paths, and Cycles

shortest path

- ▶ Walks: Let \mathbf{A}^r denote the r-th power of \mathbf{A} , with entries A_{ij}^r
- $ightharpoonup [A^2]_{ij} := \sum_{k=1}^n A_{ik} A_{kj}$
- ► Corollary: $tr(\mathbf{A}^2)/2 = |E|$ and $tr(\mathbf{A}^3)/6 = \#\triangle$ in G
 - ⇒ You will prove this in your homework

Incidence matrix

- ▶ A graph can be also represented by its $|V| \times |E|$ incidence matrix \mathbf{B} $\Rightarrow \mathbf{B}$ is in general not a square matrix, unless |V| = |E|
- ► For undirected graphs, the entries of **B** are

$$B_{ij} = \begin{cases} 1, & \text{if vertex } i \text{ incident to edge } j \\ 0, & \text{otherwise} \end{cases}$$

For digraphs we also encode the direction of the edge, namely

$$B_{ij} = \begin{cases} 1, & \text{if edge } j \text{ is } (k, i) \\ -1, & \text{if edge } j \text{ is } (i, k) \\ 0, & \text{otherwise} \end{cases}.$$

Incidence matrix examples

Examples for undirected graphs and digraphs

$$\mathbf{B}_{u} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}, \quad \mathbf{B}_{d} = \begin{pmatrix} -1 & 0 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & -1 & 0 \end{pmatrix}$$

▶ If the graph is weighted, modify nonzero entries accordingly

Triadic closure

- ► Networks are rarely static structures ⇒ Think about their evolution
 - \Rightarrow How are edges formed? \Rightarrow Universal feature \Rightarrow Triadic closure
- ▶ If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends at some point in the future

(a) Before B-C edge forms.

(b) After B-C edge forms.

Easley, David, and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. © Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fia-fair-use/.

- ► Triadic closure is very natural ⇒ Some reasons ...
 - ⇒ Opportunity: B and C have a higher chance of meeting
 - ⇒ Trusting: B and C are predisposed to trusting each other
 - ⇒ Incentive: A might have incentive to make B and C friends

Homophily

- ▶ We tend to be similar to our friends ⇒ Well known for long time
 - ⇒ Age, race, interests, beliefs, opinions, affluence, ...
- Contextual (as opposed to intrinsic) effect on network formation
 - ⇒ Contextual: Friends because we attend the same school
 - ⇒ Intrinsic: Friends because a common friend introduces us

Moody, James. "Race, School Integration, and Friendship Segregation in America." American Journal of Sociology 107 (2001): 679–716. © University of Chicago Press, All rights reserved. This content is excluded from our Creative Commons license. For more information, see thus; Joven mit edu/help/liso_lafi-use.

▶ In previous slide, B and C high chance of becoming friends

 \Rightarrow Even if they are not aware of common knowledge of A

Measuring homophily

- ▶ Is homophily present or is it an artifact of how the network is drawn?
 - ⇒ We need to formulate a precise mathematical measure
- ▶ Consider a small network of girls (q = 3/9) and boys (p = 6/9)

- ▶ If edges are agnostic to gender, portion of cross-gender edges is 2pq
 - ⇒ Homophily Test: If the fraction of cross-gender edges is significantly less than 2pq, then there is evidence for homophily
 - \Rightarrow Cross-gender edges $5/18 < 8/18 = 2pq \Rightarrow$ Mild homophily

Hearing about a new job

- ▶ Mark Granovetter (1973) interviewed people that changed jobs
- Most heard about new jobs from acquaintances rather than close friends
 - ⇒ Explanation takes into account local properties and global structure

Easley, David, and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. ♥ Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- ▶ A's friends E, C, and D form a tightly-knit group
- ightharpoonup B reaches to a different part of the network \Rightarrow New information
- ▶ Deleting (A, B) disconnects the network \Rightarrow (A, B) is a bridge
 - ⇒ But bridges are rare in real-world networks

A social network closer to reality

- ▶ In real life, there are other multi-step paths joining A and B
 - \Rightarrow If (A, B) is deleted, distance becomes more than 2 \Rightarrow Local bridge
 - ⇒ An edge is a local bridge when it is not part of a triangle

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fac_hir-use/.

- Closely knit group of friends are eager to help
 - ⇒ But have almost the same information as you

Strong triadic closure

- ▶ How does overrepresentation of bridges relate to acquaintances?
- ► Consider two different levels of strength in the links of a social network
 - ⇒ Strong ties correspond to friends, weak ties to acquaintances

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. © Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ow.mit.edu/hpjfins-fair-use/.

► A violates the Strong Triadic Closure if it has strong ties to two other nodes B and C, and there is no edge at all (strong or weak) between B and C

Local bridges and weak ties

- ► Tie strength ⇒ Local/interpersonal feature
- ► Bridge property ⇒ Global/structural feature
- ▶ How do these two features relate in light of the strong triadic closure?
- ▶ If A satisfies the strong triadic closure and is involved in at least two strong ties, then any local bridge it is involved in must be a weak tie

- ► Acquaintances are natural sources of new information
 - ⇒ Strict modeling assumptions, first-order conclusions, testable

4日 > 4周 > 4 章 > 4 章 >

MIT OpenCourseWare https://ocw.mit.edu/

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.