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11.5. CHARACTERIZING FLUCTUATIONS 

Eigenstate vs. system/bath perspectives 
From our earlier work on electronic spectroscopy, we found that there are two equivalent ways 

of describing spectroscopic problems, which can be classified as the eigenstate and system/bath 

perspectives. Let’s summarize these before turning back to nonlinear spectroscopy, using 

electronic spectroscopy as the example: 

1) Eigenstate: The interaction of light and matter is treated with the interaction picture 

Hamiltonian H H= 0 +V t  ( ) . H0  is the full material Hamiltonian, expressed as a 

function of nuclear and electronic coordinates, and is characterized by eigenstates which 

are the solution to 0H n  = E n . In the electronic case n = e n  n  1 2, ,  K  represent n 

labels for a particular vibronic state. The dipole operator in V t( ) couples these states. 

Given that we have such detailed knowledge of the matter, we can obtain an absorption 

spectrum in two ways.  In the time domain, we know 
2 e−iωmnt (1)C t( ) = ∑ pn n μ ( )t ( )  μ 0 n = ∑ pn μμμ nm 

n ,n m  

The absorption lineshape is then related to the Fourier transform of C t( ) , 


2 1
σ ω( ) = ∑ pn μ (2)nm ω ω  − Γi−n m, nm nm 

where the phenomenological damping constant Γnm  was first added into eq. (1).  This 

approach works well if you have an intimate knowledge of the Hamiltonian if your 

spectrum is highly structured and if irreversible relaxation processes are of minor 

importance.   

2) System/Bath: In condensed phases, irreversible dynamics and featureless lineshapes 

suggest a different approach. In the system/bath or energy gap representation, we separate 

our Hamiltonian into two parts: the system Hs contains a few degrees of freedom Q 

which we treat in detail, and the remaining degrees of freedom (q) are in the bath HB . 

Ideally, the interaction between the two sets HSB (qQ) is weak. 

H0 = HS + HB + HSB  . (3) 
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Spectroscopically we usually think of the dipole operator as acting on the system state, 

i.e. the dipole operator is a function of Q. If we then know the eigenstates of HS , 

H n  = E n where n = g  or e  for the electronic case, the dipole correlationS n 

function is 

2 −i ω tegC t( ) = μ e exp ⎡⎢⎣
−i∫0 

t 
HSB ( )t′ dt′⎤⎥⎦ 

(4)μμ eg 

The influence of the dark states in HB is to modulate or change the spectroscopic energy 

gap ωeg  in a form dictated by the time-dependent system-bath interaction.  The system-

bath approach is a natural way of treating condensed phase problems where you can’t 

treat all of the nuclear motions (liquid/lattice) explicitly. Also, you can imagine hybrid 

approaches if there are several system states that you wish to investigate 

spectroscopically. 

Energy Gap Fluctuations 

How do transition energy gap fluctuations enter into the nonlinear response? As we did in the 

case of linear experiments, we will make use of the second cumulants approximation to relate 

dipole correlation functions to the energy gap correlation function Ceg(τ ) . Remembering that for 

the case of a system-bath interaction that that linearly couples the system and bath nuclear 

coordinates, the cumulant expansion allows the linear spectroscopy to be expressed in terms of 

the lineshape function g t( )

Cμμ ( )t = μ 
2 

e −iωegt e −g( )t (5)eg 

(6)g t =
t 
dt′′

′′
dt′ 1 δ H t′ δ H 0( ) ∫ ∫

t 

2 ( )  eg ( )eg0 0 h14444244443
C teg( )′ 

Ceg (τ ) = δωeg (τ δω ) eg (0) (7) 

g t( )  is a complex function for which the imaginary components describe nuclear motion 

modulating or shifting the energy gap, whereas the real part describes the fluctuations and 

damping that lead to line broadening. When Ceg(τ ) takes on an undamped oscillatory form 
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Ceg( )τ = Deiω0τ , as we might expect for coupling of the electronic transition to a nuclear mode 

with frequency ω0, we recover the expressions that we originally derived for the electronic 

absorption lineshape in which D is the coupling strength and related to the Frank-Condon factor.   

Here we are interested in discerning line-broadening mechanisms, and the time scale of 

random fluctuations that influence the transition energy gap.  Summarizing our earlier results, we 

can express the lineshape functions for energy gap fluctuations in the homogeneous and 

imhomogeneous limit as  

1) Homogeneous. The bath fluctuations are infinitely fast, and only characterized by a 

magnitude: 


Ceg(τ ) ( ) .
= Γδ τ  (8) 

In this limit, we obtain the phenomenological damping result 

g t( ) = Γ t (9) 

Which leads to homogeneous Lorentzian lineshapes with width Γ. 

2) Inhomogeneous. The bath fluctuations are infinitely slow, and again characterized by a 

magnitude, but there is no decay of the correlations 

Ceg (τ ) = Δ2 . (10) 

This limit recovers the Gaussian static limit, and the Gaussian inhomogeneous lineshape 

where Δ is the distribution of frequencies. 
1 2 2g t( ) = 2 Δ t . (11) 

3) The intermediate regime is when the energy gap fluctuates on the same time scale as the 

experiment. The simplest description is the stochastic model which describes the loss of 

correlation with a time scale τc 

Ceg (τ ) = Δ2 exp (−t /τ c ) (12) 

which leads to 

g t( ) = Δ2 τ c 
2 

⎣⎡exp (−t /τ c ) + t /τ c −1⎦⎤ (13) 

For an arbitrary form of the dynamics of the bath, we can construct g t( )  as a sum over 

independent modes g t( ) =
i
g  t  . Or for a continuous distribution for modes, we can ∑ i ( )  



Andrei Tokmakoff, MIT Department of Chemistry, 5/10/2007 p. 11-47 

describe the bath in terms of the spectral density ρ (ω) that describes the coupled nuclear 

motions 

( )  1 Im ⎡C%eg ( )ω ⎤ (14)ρ ω = 
2πω 2 ⎣ ⎦ 

+∞ 1 %g t( ) = ∫−∞ 
dω 2 Ceg ( )ω ⎡⎣exp (−iωt ) + iωt −1⎤⎦2πω 

(15) 
= ∫

+∞
dω ρ ω  

⎛ ⎛ β ω
⎟
⎞ ω ω ⎟

⎞( )⎜coth ⎜ 
h (1− cosωt ) ( + i sin t − t )

−∞ ⎝ ⎝ 2 ⎠ ⎠ 

To construct an arbitrary form of the bath, the phenomenological Brownian oscillator model 

allows us to construct a bath of i damped oscillators, 

Ceg ′′ ( )ω = ∑ξiCi 
′′ ( )ω 

i 

h ω Γ (16)
C ′′ ωi ( ) = 

( i 
2 2 )2 

i 

2 
i 
2mi ω ω − + 4ω Γ 

Here ξi is the coupling coefficient for oscillator i. 

Nonlinear Response with the Energy Gap Hamiltonian 

In a manner that parallels our description of the linear response from a system coupled to a bath, 

the nonlinear response can also be partitioned into a system, bath and energy gap Hamiltonian, 

leading to similar averages over the fluctuations of the energy gap. The nonlinear response for a 

fluctuating two-level system can be written as a sum of correlation functions of the form 

i 3

4 iω τ τ  ( + )
 ⎛ i τ1 i 1 + +2 3 ⎞e eg 1 3R1 τ τ τ2 

⎛ ⎞( 1, ,  3 ) = ⎜ ⎟ pg μ exp − 
h 0 

τ 
τ τ  

d Heg⎜ ∫ d Hτ eg ( ) − ∫
τ τ τ 

τ ( )τ ⎟ (17)eg 
⎝ h 1 + 2 ⎠h⎝ ⎠  

τ τ τ τ4 −iω τ τeg ( 1 − 3 )⎛ ⎞R (τ τ τ ) i 3 

, ,  = p μ e ⎜ 0 
d Hτ eg ( ) − ∫τ τ

+ +  
d H  ( )τexp ⎛ i 

∫
1 τ 

i 1 

+ 

2 3 τ eg ⎟
⎞ (18)2 1 2 3 ⎜ ⎟  g eg

h⎝ ⎠  ⎝ h h 1 2 ⎠ 

These are the rephasing (R2) and non-rephasing (R1) functions, written for a two-level system. 

These expressions only account for fluctuations of the energy gap while the system evolves 

during the coherence periods τ1 and τ3. Since they neglect any difference in relaxation on the 

ground or excited state during the population period τ2, R2=  R3 and R1=  R4. They also ignore 

reorientational relaxation of the dipole. Otherwise the primary assumption to obtain this form is 
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the Condon approximation, in which we say that the dipole is only an operator in the system 

coordinates Q, and not in the bath coordinates q. 

Using the cumulant expansion, the third order response function for a two-level system 

can be rewritten in terms of our four correlation functions and the lineshape function for the 

system: 

R( ) ( , ,  ) = 
i 3 

θ τ θ τ θ τ  
4 

R ( , ,  − R* τ τ τ  )⎤ (19)3 τ τ τ  ⎛ ⎞  ( ) ( ) ( )  ⎡ τ τ τ  )  (  , ,1 2 3 ⎜ ⎟  1 2 3 ∑⎣ α 1 2 3 α 1 2 3 ⎦⎝ ⎠  α 1h = 

− i 3

iω τ  ω τ  −i ⎛ ⎞ 
 4

R1 = e eg 1 eg 3 
⎜ ⎟ pg μeg  
h  (20) 

exp − * τ − g τ * * τ  τ  + g )  (  τ τ  τ  ⎤ 

⎝ ⎠  

× ⎡ g ( ) ( )  ( )  (  − g τ + g + )  (  τ τ  + − g +  +  )⎣ 3 1 2 2 3 1 2 1 2 3 ⎦ 

i 3

4 

e eg 1 −i eg 3
iω τ  ω τ  R = ⎛ ⎞  p μ2 ⎜ ⎟ g  eg  
h  (21)⎝ ⎠  

⎡ * * + * τ τ + g * τ τ τ  + +  ⎤× exp −g τ − g τ + g τ − g τ  τ  − g +( ) ( ) ( ) (  ) (  ) (  )⎣ 3 1 2 2 3 1 2 1 2 3 ⎦ 

i 3
⎛ ⎞  ω τ  ω τ  4 

ei eg 1 −i eg 3R3 = ⎜ ⎟ pg μeg  
h  (22)⎝ ⎠  

* * * * * × ⎣⎡ g ( )  ( )  ( )  (  3 1 + g τ 2 − g 2 + 3 )  (  τ τ  1 + 2 + g 1 + +  2 3 )⎦exp − τ − g τ  τ τ  − g )  (  τ τ  τ  ⎤ 

i 3
⎛ ⎞  4 −iω τ  ω τ  1 −i eg 3e egR4 = ⎜ ⎟ pg μeg  
h  (23)⎝ ⎠  

× g ( )  ( )  ( )  (  − g τ + g + )  (  τ τ+ g +  +  )⎤exp ⎡− τ − g τ  τ τ  + g ) (  − τ τ  τ  ⎣ 3 1 2 2 3 1 2 1 2 3 ⎦ 

These expressions provide the most direct way of accounting for fluctuations or periodic 

modulation of the spectroscopic energy gap in nonlinear spectroscopies.   

Example:  For the two-pulse photon echo experiment on a system with inhomogeneous 

broadening: 

( )  egt 1
2 

2 2  For this simple model g(t) is real. • Set g t  = Γ  + Δ  t . 

i 3
⎛ ⎞  4 i eg 1 −i eg 3 

⎣ 2 3 τ1 + 1 + 3 )⎦• Set τ2 = 0, giving R2 = R3 = ⎜ ⎟ pg μ e ω τ  ω τ  exp ⎡− g ( )τ − 2g ( )  (  g τ  τ  ⎤ .eg  
h⎝ ⎠

• Substituting g(t) into this expression gives the same result as before. 

( )  − eg ( 1 3 ) − eg (τ τ  + 3 −  −  ) Δ1 3R 3 ∝ e iω τ τ  − e Γ 1 ) e (τ τ 2 2 / 2  (24) 
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How can you characterize fluctuations and spectral diffusion? 
The rephasing ability of the photon echo experiment provides a way of characterizing memory of 

the energy gap transition frequency initially excited by the first pulse. For a static 

inhomogeneous lineshape, perfect memory of transition frequencies is retained through the 

experiment, whereas homogeneous broadening implies extremely rapid dephasing.  So, let’s first 

examine the polarization for a two-pulse photon echo experiment on a system with homogeneous 

and inhomogeneous broadening by varying Δ / Γeg . Plotting the polarization as proportional to 

the response in eq. (24): 

P (τ1 ,τ 3 ) 

= 3 

We see that following the third pulse, the polarization (red line) is damped during τ3 through 

homogeneous dephasing at a rate Γeg , regardless of Δ. However in the inhomogeneous case 

Δ >> Γ  eg , any inhomogeneity is rephased at τ1 = τ3 . The shape of this echo is a Gaussian with 

width ~ 1/ Δ . The shape of the echo polarization is a competition between the homogeneous 

damping and the inhomogeneous rephasing.  

1τ 3τ 
3τ1τ= 

3ege τ−ΓegΔ << Γ  

1τ 3τ τ1τ

egΔ ≈ Γ  

1τ 3τ 
3τ1τ= 

egΔ >> Γ  

1 Δ� 
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Normally, one detects the integrated intensity of the radiated echo field.  Setting the pulse 

delay τ1 = τ, 

2( ) ∝ ∫
∞ 

3S τ dτ P(3) (τ  τ  , 3 )  (25)
0 

S τ 
⎛
⎜⎜ 4 eg 

Γ

Δ 
eg 

2

2 ⎞
⎟⎟ 

⎛
⎜ −Δ  +  

Γ

Δ 
eg ⎞

⎟ , (26)( ) = exp − Γ  τ − ⋅erfc τ 
⎝ ⎠ ⎝ ⎠ 

where erfc(x) = 1−erf(x) is the complementary error function. For the homogeneous and 

inhomogeneous limits of this expression we find 
− ΓegΔ << Γ  eg ⇒ S (τ ) ∝ e 2 τ (27) 

− ΓegΔ >> Γ  eg ⇒ S (τ ) ∝ e 4 τ (28) 

In either limit, the inhomogeneity is removed from the measured decay. 

In the intermediate case, we observe 

that the leading term in eq. (26) decays 

whereas the second term rises with time. 

This reflects the competition between 

homogeneous damping and the 

inhomogeneous rephasing. As a result, for 

the intermediate case ( Δ ≈ Γab ) we find that 

the integrated signal S(τ) has a maximum 

signal for τ > 0 . 
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The delay of maximum signal, τ*, is known as the peak shift. The observation of a peak shift is 

an indication that there is imperfect ability to rephrase. Homogenous dephasing, i.e. fluctuations 

fast on the time scale of τ, are acting to scramble memory of the phase of the coherence initially 

created by the first pulse.  

In the same way, spectral diffusion (processes which randomly modulate the energy gap 

on time scales equal or longer than τ) randomizes phase.  It destroys the ability for an echo to 

form by rephasing.  To characterize these processes through an energy gap correlation function, 

we can perform a three-pulse photon echo experiment. The three pulse experiment introduces a 

waiting time τ2 between the two coherence periods, which acts to define a variable shutter speed 

for the experiment. The system evolves as a population during this period, and therefore there is 

nominally no phase acquired.  We can illustrate this through a lens analogy: 

Lens Analogy: For an inhomogeneous distribution of oscillators with different frequencies, 
we define the phase acquired during a time period through eiφ = ei(δωit ) . 

Two-Pulse Photon Echo: Rephasing 

0 

φ 

τ1 τ3 

Three-Pulse Photon Echo: 

φ 

0 

τ1 τ3τ2 

Since we are in a population state during τ2, there is no evolution of phase. Now to this picture 

we can add spectral diffusion as a slower random modulation of the phase acquired during all 

time periods.  If the system can spectrally diffuse during τ2, this degrades the ability of the 

system to rephase and echo formation is diminished.   
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Three-Pulse Photon Echo with Spectral Diffusion: 

0 

φ 

τ1 τ2 τ3

Since spectral diffusion destroys the rephasing, the system appears more and more 

“homogeneous” as τ2 is incremented. Experimentally, one observes how the peak shift of the 

integrated echo changes with the waiting time τ2. τ* 0  as aIt will be observed to shift toward =

function of τ2. 

In fact, one can show that the peak shift with τ2 decays with a form given by the the 

correlation function for system-bath interactions: 

τ * (τ 2 ) ∝ Ceg (τ ) (29) 

2 2Using the lineshape function for the stochastic model g t( ) = Δ τ c ⎡⎣exp (−t /τ c ) + t /τ c −1⎤⎦ , you 

can see that for times τ2 > τc, 
*τ τ( ) ∝ exp (−τ τ/ ) ⇒ δω τ δ( ) ω (0) (30)2 2 c eg eg 

Thus echo peak shift measurements are a general method to determine the form to Ceg (τ ) or 

eg ( )  ( )C′′ ω  or ρ ω . The measurement time scale is limited only by the population lifetime. 




