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7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS§ 

Introduction 
In describing fluctuations in a quantum mechanical system, we will now address how they 

manifest themselves in an electronic absorption spectrum by returning to the Displaced 

Harmonic Oscillator model. As previously discussed, we can also interpret the DHO model in 

terms of an electronic energy gap which is modulated as a result of interactions with nuclear 

motion. While this motion is periodic for the case coupling to a single harmonic oscillator, we 

will look this more carefully for a continuous distribution of oscillators, and show the 

correspondence to classical stochastic equations of motion.  

Energy Gap Hamiltonian 

Now let’s work through the description of the Energy Gap Hamiltonian more carefully. 

Remember that the Hamiltonian for coupling of an electronic transition to a harmonic degree of 

freedom is written as  

H0 = He + Ee + Hg + Eg (7.48) 

H0 = =ωeg + Heg + 2Hg (7.49) 

where the Energy Gap Hamiltonian is 

Heg = He − Hg . (7.50) 

Note how eq. (7.49) can be thought of as an electronic “system” interacting with a harmonic 

“bath”, where Heg  plays the role of the system-bath interaction: 

H0 = HS + HSB  + HB (7.51) 

We will express the energy gap Hamiltonian through reduced coordinates for the 

momentum, coordinate, and displacement of the oscillator 

p̂ . (7.52) 
0 

2 p 
mω 

= 
= � 

q = 
mω0 q̂ (7.53) 

� 2= 

§ See Mukamel, Ch. 8 and Ch. 7. 
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d = 
mω0 d (7.54)

� 2=
2

He = =ω0 ( p2 + (q − d ) )� � � (7.55) 
2 2Hg = =ω0 ( p + q )
� �

From (7.50) we have 

Heg = − 2=ω0d q  + =ω0d 2 

� � � (7.56)

= − 2=ω0d q  + λ


� �

So, we see that the energy gap Hamiltonian describes a 

linear coupling of the electronic system to the coordinate q. 

The slope of Heg versus q is the coupling strength, and the 

average value of Heg in the ground state, Heg(q=0), is offset 

by the reorganization energy λ. 

To obtain the absorption lineshape from the dipole 

correlation function we must evaluate the dephasing 

function. 
2

Cμμ ( )t = μ e−iωegt F  t  ( )  (7.57)eg 

eiH t e− eg iH t †F t( ) = = U U  (7.58)g e 

We now want to rewrite the dephasing function in terms of the time dependence to the energy 

gap Heg ; that is, if F t( ) = Ueg , then what is Ueg ? This involves a transformation of the 

dynamics to a new frame of reference and a new Hamiltonian. The transformation from the DHO 

Hamiltonian to the EG Hamiltonian is similar to our derivation of the interaction picture.  Note 

the mapping 

He = Hg + Heg  ⇔ H = H0 +V (7.59) 

Then we see that we can represent the time dependence of Heg by evolution under H g . The 

time-propagators are 
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−iH t e e = = e−iH t g = exp+ 

⎡−i t
d H  τ ⎤ 

⎢ ∫0 
τ eg ( )⎥⎣ = ⎦ (7.60) 

U = U U  e  g eg  

and 
H ( ) = 

iH t = −iH t = gt e g H eeg eg 
. (7.61) 

†= U H U  g  eg  g  

Remembering the equivalence between H g and the bath mode(s) HB indicates that the time 

dependence of the EG Hamiltonian reflects how the electronic energy gap is modulated as a 

result of the interactions with the bath.  That is U g = UB . 

Equation (7.60) immediately implies that  

t
Ueg ( ) = exp+

⎣⎢
⎡− 

=
i 
∫0 

dτ Heg ( )τ 
⎦⎥
⎤ (7.62)τ 

tiH t −iH t e g e e = exp+ 

⎡
⎢⎣

− 

=
i 
∫0 

τ Heg ( )⎤⎥⎦ 
d τ (7.63)F t( ) = 

Note: Transformation of time-propagators to a new Hamiltonian 
If we have 

eiH At Ae−iH Bt 

and we want to express this in terms of  
( B − A )t −iHBAtAe−i H  H  = Ae , 

we will now be evolving the system under a different Hamiltonian HBA . We must 

perform a transformation into this new frame of reference, which involves a unitary 

transformation under the reference Hamiltonian:  

Hnew = Href + Hdiff


−iH t ⎡ i τ ⎤
e−iHnew t = e ref exp + ⎢⎣
− 
= ∫0 

t
dτ Hdiff ( )⎥⎦ 

H τ = U † H Udiff ( )  ref diff ref 
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This is what we did for the interaction picture. Now, proceeding a bit differently, we 

can express the time evolution under the Hamiltonian of HB  relative to H A as 

HB = H A + HBA  

B A τe−iH t = e−iH t exp+ ⎢
⎡−

i 
∫0 

t
dτ HBA ( )⎥

⎤


⎣ = ⎦


( )  +iH At −iH Atwhere HBA τ = e HBA e . This implies: 

e+iH t e−iH t = exp ⎡−
i dτ H τ ⎤A B 

+
⎣⎢ = ∫0 

t 

BA ( )
⎦⎥ 

Using the second-order cumulant expansion allows the dephasing function to be written as 

F t( ) = exp 
⎣⎢
⎡− 

= 
i 
∫0 

t
dτ τH ( )eg 

(7.64)
⎤⎛ −i ⎞

2 
t τ2+

⎝
⎜ = ⎠

⎟ ∫0 
dτ 2 ∫0 

dτ1 − τ τ( )τ H ( )  H ( )  H ( ) ⎥ 
⎥

Heg 2 eg τ1 eg 2 eg 1 
⎦ 

Note that the cumulant expansion is here written as a time-ordered expansion here.  The first 

exponential term depends on the mean value of Heg 

H = =ω0d 2 = λ (7.65)eg �
This is a result of how we defined Heg . Alternatively, the EG Hamiltonian could also be defined 

relative to the energy gap at Q = 0 : Heg = He − Hg − λ . In fact this is a more common definition. 

In this case the leading term in (7.64) would be zero, and the mean energy gap that describes the 

high frequency (system) oscillation in the dipole correlation function is ωeg + λ . 

The second exponential term in (7.64) is a correlation function that describes the time 

dependence of the energy gap 

− H (τ ) H (τ )Heg ( )τ 2 Heg (τ1 ) eg 2 eg 1 
(7.66) 

= δ H τ δ  Heg τ1eg ( )2 ( )  

where δ H = H − H . (7.67)eg eg eg 

Defining the time-dependent energy gap frequency in terms of the EG Hamiltonian as 
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δ H
δωeg ≡ 

=
eg (7.68) 

we obtain 
C (τ τ, ) = (τ − ) 0δω τ δω ( ) (7.69)eg 2 1 eg 2 1 eg 

F t( ) = exp ⎡
⎣⎢

− 

=
i λt − ∫0 

t
dτ 2 ∫0 

τ2 dτ1 Ceg (τ 2 −τ1 )
⎤
⎦⎥ (7.70) 

So, the dipole correlation function can be expressed as 

2 −i E  −E +λ t /= −g t
Cμμ ( )t = μ e ( e g ) e ( ) (7.71)eg 

(τ − ) 0g t( ) = 
t
dτ

τ2 dτ δω τ δω ( ) . (7.72)eg 2 1 eg∫0 2 ∫0 1 

This is the correlation function expression that determines the absorption lineshape for a time-

dependent energy gap. It is a perfectly general expression at this point. The only approximation 

made for the bath is the second cumulant expansion. 

Now, let’s look specifically at the case where the bath we are coupled to is a single 

harmonic mode. Evaluating the energy gap correlation function 

C t( ) = p n δωeg (t )δωeg (0) neg ∑ n

n


1 iH t = − g = e g= 2 ∑ pn n δ H e iH t δ H n (7.73)eg eg= n 

= ω0
2 

⎣⎡( +1)e−i tω0 + n e+i t0 
⎦⎤D n  ω 

Here, as before, D d  2 , and n  is the thermally averaged occupation number for the oscillator= 
� 

=†n = ∑n 
pn n a a n = (eβ ω0 −1)−1 

. (7.74) 

Note that Ceg  is a complex quantity with 

C t  = C ′ + iC ′′  (7.75)eg ( )  eg eg 

C t′ ( ) = ω2 D coth ( =β ω  2 cos) (ω0t )eg 0 0 

eg ′′ ( )  0
2 ( 0 ) 

(7.76)
C t  = ω D sin ω t 

x − x( ) ( ) (e − e ) . As the temperature is raised well beyond the frequency ofHere coth x = ex + e− x 

the oscillator, Ceg becomes real, C ′ >> C ′′ , and C t  ~ cosω t . This is the simple classicaleg eg eg ( ) 0 

limit in which the energy gap is modulated at the frequency of the oscillator. 
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Evaluating (7.72) gives the lineshape function 

g t( ) = D ⎡⎣coth (β ω= 0 / 2 1 cos)( − ω0t ) + i (sinω0t −ω0t )⎦⎤ 
(7.77) 

= +g ig ′′ ′

We also have real ( )g′ and imaginary ( g′′) contributions to F t( ) . Alternatively, we can write 

this in a form that more closely parallels our earlier DHO expressions 
−i t  +i tω ωg t( ) = D n e⎡ 0 1 e 0 −1 + e 0 −1 ⎤ iD t⎣ ( ω − + ) ( −i t  )⎦ − ω0 

= ⎡( +1) e−i t0 − ) + n e( i t0 −1 ⎤ − iD t 
(7.78) 

D n  ( ω 1 + ω ) ω⎣ ⎦ 0 

The leading term gives us a vibrational progression, the second term leads to hot bands, and the 

final term is the reorganization energy. 

Looking at the low temperature limit for this expression, coth (β ω0 / 2 →1 and n → 0 ,= ) 

we have 

( ) = D[1 cosω0t i sin 0 − ω0 ]g t  − + ω t i t 

1 − e ω0 i t⎤ 
. (7.79) 

= D ⎣
⎡ −i t − ω0 ⎦ 

Combining with 

−i t /=−g t( ) −iD t g tω − )F t( ) = e λ
= e 0 (  (7.80) 

we have our old result: 

⎡ − ω0 ⎤F t( ) = exp ⎢⎣
D (e i t −1)⎥⎦ . (7.81) 

In the high temperature limit coth (β=ω 2) → 2 β ω and g′>> g′′= . From eq. (7.77) we 

obtain 

F t( ) = exp ⎢
⎡ −2D (1− cos (ω0t ))⎥

⎤ 

β ω0 ⎦⎣ = 
(7.82) 

−2DkT /=ω
∞ 1 2⎛ DkT ⎞

j 

= e 0 ∑ ⎜ ⎟ cos j(ω0t ) 
j=0 j!⎝ =ω0 ⎠ 

which leads to an absorption spectrum which is a series of sidebands equally spaced on either 

side of ωeg. 
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Spectral representation of energy gap correlation function 
Since time- and frequency domain representations are complementary, and one form may be 

preferable over another, it is possible to express the frequency correlation function in terms of its 

spectrum.  We define a Fourier transform pair that relates the time and frequency domain 

representations: 

ωC� eg ( ) ω = ∫
+∞ 

ei tω Ceg ( )t dt = 2 Re  ∫
+∞ 

ei t Ceg ( )  . (7.83)t dt 
−∞ 0 

eg ( ) = 
1 

∫
+∞ 

e−i t  �
eg ( ) dtC t  

−∞ 

ω C ω (7.84)
2π 

The second equality in eq. (7.83) follows from Ceg (− =) Ceg 
* Also it implies thatt (t ) . 

� � �Ceg (ω) = Ceg ′ (ω) + Ceg ′′ (ω) (7.85) 

Where C� ′ ω and C� ′′ ω are the Fourier transforms of the real and imaginary components ofeg ( )  eg ( )  

C t  , respectively. Note that C� ω is an entirely real quantity. 

With these definitions in hand, we can the spectrum of the energy gap correlation 

function for coupling to a single harmonic mode spectrum (eq. (7.73)): 

C� ( ) ω = ω 2 D ( ) ⎡(n +1)δ ω ω ( − ) + n ( + )⎤ . (7.86) 

eg ( ) eg ( )  

eg α α ωα ⎣ α α α δ ω ω α ⎦ 

This spectrum characterizes the thermally 

averaged balance between upward energy transition 

of the system and downward in the bath δ (ω ωα )− 

and vice versa in δ (ω ωα ) . This is given by the+ 

detailed balance expression 
=C� (−ω) =e−β ωC� ( ) . (7.87)ω 

The balance of rates tends toward equal with increasing temperature. Fourier transforms of eqs. 

(7.76) gives two other representations of the energy gap spectrum 

C� eg′ ( ) ωα = ωα 
2 D ( ) ωα coth ( = αβ ω ) ⎡⎣ ( − α ) +δ ω ω ( + α )⎤⎦ (7.88)2 δ ω ω 

� ( ) 2 ( ) δ ω ω ( ) δ ω ω ( )Ceg′′ ωα = ωα D ωα ⎣⎡ − α + + α ⎦⎤ . (7.89) 

The representations in eqs. (7.86), (7.88), and (7.89) are not independent, but can be related to 

one another through the detailed balance expression: 
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�Ceg ′ (ωα ) = coth ( = α 
� β ω  2)Ceg ′′ (ωα ) (7.90) 

�C ω = +1 coth  β=ω 2))Ceg ′′ (ωα ) (7.91)� 
eg ( α ) ( ( α 

Due to its independence on temperature, C�eg′′ (ωα ) is a commonly used representation. Also. 

from eqs. (7.72) and (7.84) we obtain the lineshape function as 
�+∞ 1 Ceg (ω)

g t( ) = ∫−∞ 
dω 

2π ω 2 ⎡⎣exp (−iωt ) + iωt −1⎤⎦ . (7.92) 
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Distribution of States: Coupling to a Harmonic Bath 
More generally for condensed phase problems, the system coordinates that we observe in an 

experiment will interact with a continuum of nuclear motions that may reflect molecular 

vibrations, phonons, or intermolecular interactions. We conceive of this continuum as continuous 

distribution of harmonic oscillators of varying mode frequency. The Energy Gap Hamiltonian is 

readily generalized to the case of a continuous distribution of motions if we statistically 

characterize the density of states and the strength of interaction between the system and this bath. 

This method is also referred to as the Spin-Boson Model used for treating a spin two-level 

system interacting with a quantum harmonic bath. 

Following our earlier discussion of the DHO model, the generalization of the EG 

Hamiltonian to the multimode case is 

H0 = =ωeg + Heg + HB (7.93) 

HB = ∑=ωα ( pα 
2 + qα 

2 ) (7.94) 
α � �

H = 2=ω d q + λ (7.95)eg ∑ α α α  
α � �

λ = ∑=ωα dα 
2 (7.96) 

α �

Note that the time-dependence to Heg  results from the interaction with the bath: 

= e−iH t =B H BHeg (t ) = eiH t 
eg (7.97) 

Also, since the harmonic modes are normal to one another, the dephasing function and lineshape 

function are readily obtained from 

F t( ) = ∏ Fα (t ) g t  ( ) = ∑ gα (t ) (7.98) 
α α 

For a continuum, we assume that the number of modes are so numerous as to be 

continuous, and that the sums in the equations above can be replaced by integrals over a 

continuous distribution of states characterized by a density 

of states W ( )ω . Also the interaction with modes of a 

particular frequency are equal so that we can simply average 

over a frequency dependent coupling constant 

D ω = d ω . For instance, eq. (7.98) becomes  ( )  2( )
� 



7-20 

g t( ) = ∫ dωα W (ωα ) g t( ,ωα ) (7.99) 

Coupling to a continuum leads to dephasing that results from interactions of modes of varying 

frequency. This will be characterized by damping of the energy gap frequency correlation 

function eg ( )C t  

eg ( ) = ∫ dωα Ceg (ωα , t W αC t  ) (ω ) . (7.100) 

Here Ceg (ωα , t ) = δω ω , t δω ω ,0 refers to the energy gap frequency correlationeg ( α ) eg ( α ) 

function for a single harmonic mode given in eq. (7.73). 

While eq. (7.100) expresses the modulation of the energy gap in the time domain, we can 

alternatively express the continuous distribution of coupled bath modes in the frequency domain: 

� 
eg ( ) = dω W ( ) 

+∞ 
ei t C ω , )C ω ∫ α ωα ∫−∞

ω 
eg ( α t dt 

. (7.101) 
= dω W ( ) ω C ( )∫ α α 

� 
eg ωα 

An integral of a single harmonic mode spectrum over a continuous density of states provides a 

coupling weighted density of states that reflects the action spectrum for the system-bath 

interaction. We evaluate this with the single harmonic mode spectrum, eq. (7.86). We see that the 

spectrum of the correlation function for positive frequencies is related to the product of the 

density of states and the frequency dependent coupling 

Ceg ( )ω = ω D ω ω n +1) (7.102) 

This is an action spectrum that reflects the coupling 

weighted density of states of the bath that contributes to 

the spectrum. 

More commonly, the frequency domain representation of the coupled density of states in 

eq. (7.102) is expressed as a spectral density 

� 2 ( )W ( )( 

�C′′ (ω)
ρ ω ≡ eg( )  2πω 

= 
1 

∫ dω W ( ) ( ) ( ω D ω δ ω ω ) (7.103)−
π α α α α 

1 
= ωW ( )  ( )D ω

π 

From eqs. (7.72) and (7.101) we obtain the lineshape function in two forms 
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� 
g t( ) = ∫

+∞
dω 

1 Ceg ( 
2 

ω)
⎡⎣exp (−iωt ) + iωt −1⎤⎦−∞ 2π ω . (7.104)

∞ 
= ∫0 

d ( ) ⎡
⎢coth ⎛

⎝
⎜

β ω= 
2 

⎞
⎠
⎟( − cosωt ) + i (sinωt −ωt )⎤⎥ω ρ ω  1 

⎣ ⎦ 

In this expression the temperature dependence implies that in the high temperature limit, the real 

part of g(t) will dominate, as expected for a classical system. The reorganization energy is 

obtained from the first moment of the spectral density 

λ = =∫
∞

dω ω ρ ω  ( ) . 	(7.105)
0 

This is a perfectly general expression for the lineshape function in terms of an arbitrary spectral 

distribution describing the time-scale and amplitude of energy gap fluctuations. Given a spectral 

density ρ(ω), you can calculate spectroscopy and other time-dependent processes in a fluctuating 

environment. 

Now, let’s evaluate the lineshape function for two special cases of the spectral density. 

To keep things simple, we will look specifically at the high temperature limit, kT >> =ω . Here 

coth (β=ω 2) → 2 β ω=  and we can neglect the imaginary part of the frequency correlation 

function and lineshape function: 

1) What happens when C� ′′ ω grows linearly with frequency? This represents a system that iseg ( )  

�coupled with equal strength to a continuum of modes. Setting Ceg′′ (ω) = Γω and evaluating 

� 
eg( ) = ∫0 

dω
πβ ω ω 2 (1 cos  . 	(7.106)g t  

+∞ 1 C (ω)
− ωt )

= 
= Γt 

A linearly increasing spectral density leads to a homogeneous Lorentzian lineshape with 

width Γ. This case corresponds to a spectral density that linearly decreases with frequency, 

and is also referred to as the “white noise” spectrum. 

2) 	 Now take the case that we choose a Lorentzian spectral density centered at ω=0. Specifically, 

let’s write the imaginary part of the Lorentzian lineshape in the form 
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Ceg′′ ( ) = 
2
2 

Λω 
2 (7.107)� ω λ .

ω + Λ  

Here, in the high temperature (classical) limit 

kT >> , neglecting the imaginary part, we find:= 

2λkTg t( ) ≈ 
=Λ2 ⎣⎡exp (−Λt ) + Λ −t 1⎦⎤ (7.108) 

This expression looks familiar. If we equate 

2 2λkT
Δ =  (7.109)

=

and τ c = 
1 , (7.110)
Λ

we obtain the same lineshape function as the classical Gaussian-stochastic model: 
2 2g t( ) = Δ τ c ⎣⎡exp (−t /τ c ) + t /τ c −1⎦⎤ (7.111) 

So, the interaction of an electronic transition with a harmonic bath leads to line broadening 

that is equivalent to random fluctuations of the energy gap. 

Λ
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Coupling to a Harmonic Bath: Correspondence to Stochastic Equation** 

So, why does coupling to a quantum harmonic bath give the same results as the classical 

stochastic equations for fluctuations?  Why does coupling to a continuum of bath states have the 

same physical meaning as random fluctuations?  The answer is that in both cases, we really have 

imperfect knowledge of the particles of the bath, and observing a subset of those particles will 

have a random character that can alternatively be viewed as a correlation function or a spectral 

density for the time-scales of motion of the bath. 

To take this discussion further, let’s again consider the electronic absorption spectrum 

from a classical perspective. It’s quite common to think that the electronic transition of interest is 

coupled to a particular nuclear coordinate Q  which we will call a local coordinate. This local 

coordinate could be an intramolecular normal vibrational mode, a intermolecular rattling in a 

solvent shell, a lattice vibration, or another motion that influences the electronic transition. The 

idea is that we take the observed electronic transition to be linearly dependent on one or more 

local coordinates. Therefore describing Q allows us to describe the spectroscopy. However, since 

this local mode has further degrees of freedom that it may be interacting with, we are extracting a 

particular coordinate out or a continuum of other motions, the local mode will appear to feel a 

fluctuating environment—a friction. 

Classically, we would describe the fluctuations in Q as Brownian motion, described by a 

Langevin equation. In the simplest sense this is an equation that restates Newton’s equation of 

motion F=ma for a fluctuating force acting on a harmonic coordinate Q. 

�� 2 2 �mQ t( ) + mω Q + m Q = f t ) (7.112)0 γ (
Here the terms on the left side represent a damped harmonic oscillator. The first term is ma, the 

second term is the restoring force of the harmonic potential Fres = ∂ ∂Q , and the third termV 

allows friction γ to damp the motion of the coordinate. The motion of Q is driven by f(t), a 

random fluctuating force. We take f(t) to follow Gaussian statistics and obey the classical 

fluctuation-dissipation theorem: 

f t( ) = 0 (7.113) 

f (t f) (0) m kT (t ) (7.114)= 2 γ δ

** See: Nitzan, Ch. 8; Mukamel, Ch. 8; M. Cho and G.R. Fleming, “Chromophore-solvent dynamics,” Annu. Rev. 
Phys. Chem. 47 (1996) 109. 
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Here the delta function indicates that we have a Markovian system − the fluctuations 

immediately loose all correlation on the time scale of the evolution of Q. 

A more general description is the Generalized Langevin Equation, which accounts for the 

possibility that the damping may be time-dependent and carry memory of earlier configurations 

�� 2 2 t �mQ t + mω Q + m dτ γ t −τ Q τ = f t . (7.115)( )  0 ∫0 
(  ) ( )  ( )  

γ (t −τ ) , the memory kernel, is a correlation function that describes the time-scales of the 

fluctuating force and obeys 

= 2mkT γ (t −τ ) . (7.116)f t( ) f (τ ) 

The GLE reduces to the Markovian limit eq. (7.112) for the case that γ (t −τ ) = γδ (t −τ ) . 

The Langevin equation can be used to describe the correlation function for the time 

dependence of Q. For the Markovian case, eq. (7.112), 

CQQ ( ) = 
m
kT 
ω0

2 
⎛
⎜
⎝ 

cos Ω + 
2 
γ
Ω 

sin Ωt ⎞⎟
⎠

−γ t /2t t e (7.117) 

where the reduced frequency Ω =  ω0
2 − γ 2 4 . The frequency domain expression is 

�C ( )ω =
γ kT 

( 0 −ω 

1 

) + ω γ 
. (7.118)QQ mπ ω2 2 2 2 2 

In the case of the GLE, similar expression are obtained, although now the damping constant is 

replaced by γ� ( )ω , which is the frequency spectrum of the correlation function for the fluctuating 

force on the oscillator. This coordinate correlation function is just what we need for describing 

lineshapes. Note the quantum mechanical energy gap correlation function was 

C t( ) = δ H t δ H 0 = = 2ω0
2d 2 q t q 0 (7.119)eg ( )  eg ( ) ( )  ( )eg � � �

We can get obtain exactly the same behavior as the classical GLE by solving the quantum 

mechanical problem by coupling to a bath of N harmonic oscillators, specified by coordinates q. 
N 

2 2Hnuc = ∑=ωα ( pα + qα ) (7.120) 
α =1 � �

With this Hamiltonian, we can construct N  harmonic coordinates any way we like with the 

appropriate unitary transformation. Specifically, we want to transform to a frame of reference 
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that includes our local mode Q  and N−1 other linearly coupled normal modes, Xi. Given the 

transformation: 

⎛ Q ⎞ 
⎜ ⎟ 
⎜ X1 ⎟ 

U x  = ⎜ X 2 ⎟ (7.121)
� �  ⎜ ⎟ 

⎜ # ⎟ 
⎜ ⎟
⎝ X n−1 ⎠ 

we can write 
N −1 

H = =ω p2 + Q2 + =ω p2 + X 2 + 2Q  c X  α (7.122)nuc 0 ( ) ∑ α ( α � α ) ∑ α 
� � α =1 � � α 

Here we have expressed the Hamiltonian as a primary local mode Q linearly coupled to the 

remaining degrees of freedom with a strength c.  In the following section, we describe how the 

correlation function for the coordinate Q in a Hamiltonian of this form is the same as the 

classical GLE, and reflects the fluctuating force acting on Q. 

Electronic transition, ωeg Primary coordinate, Q Bath of H.O.s, Xα 

Therefore, a harmonic bath can be used to construct the behavior corresponding to 

random fluctuations. The important thing to remember when using a harmonic bath is that it is an 

abstract entity and does not have a clear physical interpretation in and of itself.  If the spectral 

density has a peak at a frequency that corresponds to a known vibration of the molecule, it is 

reasonable to assume that the electronic transition is coupled to this motion. On the other hand if 

the spectral density is broad and featureless, as is common for low frequency intermolecular 

motions in condensed phases, then it is difficult to ascribe a clear microscopic origin to the 

motion. It is challenging to evaluate and understand both the frequency dependent density of 

states and the frequency dependent coupling, making is that much more challenging to assign the 

spectral density. Strategies that are meant to decompose and assign these effects remain an active 

area of research. 
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The Brownian Oscillator 
Now we do back to our energy gap Hamiltonian and express it in a form that describes the 

energy gap dependence on one primary vibration which is linearly coupled to the remaining 

modes of a quantum bath. This formulation is known as the Brownian oscillator model. 

We begin by writing 

H H= S + HB + HSB (7.123) 

where the system Hamiltonian is the full Hamiltonian for a displaced harmonic oscillator 

Hamiltonian which described the coupling of the electronic energy gap to a local mode, q. 

HS = E H E E + G H G G (7.124) 

The remaining terms describe the interaction of the primary oscillator q with the remaining 

coordinates of the bath xa 

αHB + HSB = ∑
⎛
⎜ 

pα 
2 

+
mαωα 

2 ⎛
⎜ xα − 

c q 
2 

⎞
⎟ 

2 ⎞
⎟ (7.125) 

α ⎜
⎝ 2mα 2 ⎝ mαωα ⎠ ⎟

⎠ 

Note here each of the bath oscillators is expressed as a displaced harmonic oscillator to the 

primary mode. Here cα is the coupling strength. This can be expressed in a somewhat more 

familiar form by separating 
2 2HB = ∑=ωα ( pα + qα )

α � �  (7.126)
H = q c x + λSB ∑ α α  

α 

The Brownian Oscillator Hamiltonian can now be used to solve for the modulation of the 

electronic energy gap induced by the bath. We start with 

C t  = (7.127)δ H t δ H 0 = ξ 2 q t q 0eg ( )  ( )  eg ( )  ( )  ( )eg 
� �

ξ = 2=ω0d is the measure of the coupling of our primary oscillator to the electronic transition. 
�

The correlation functions for q  are complicated to solve for, but can be done analytically: 

= ω γ  ω( )  2 

� ( )C� eg′′ ω = ξ 
2m 2 2 2 2 ω 

. (7.128)
(ω −ω ) + ω γ� ( )0 

Here γ� ( )ω is the spectral distribution of couplings between our primary vibration and the bath: 
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2 

γ� ω = π	 −δ ω ω	 (7.129)( )  ∑ 2m
cα

ω 2 ( α ) 
α α α 

Here we see that the correlation function for the motion of the Brownian oscillator primary 

coordinate is equivalent to the randomly fluctuation coordinate described by the GLE, where the 

friction spectrum is described the magnitude of couplings between the primary and bath 

oscillators. 

For the case that we can replace γ� (ω) with a constantγ , the energy gap time correlation 

function can be obtained as 

C t  = ξ exp −γ t / 2 sin Ωt	 (7.130)eg′′ ( )  = 1 ( )
2m Ω 

where Ω =  ω0
2 −γ 2 / 4  is the reduced frequency. Using this model to describe the energy gap 

correlation function allows one to vary the parameters to interpolates smoothly between the 

coherent undamped limit and the overdamped Gaussian stochastic limit. Consider the following: 

1) If we set γ → 0 , we recover our earlier result for Ceg(t) and g(t) for coupling to a single 

undamped nuclear coordinates and leads to fine structure on the electronic spectrum 

2) For weak damping γ << ω , eq. (7.130) becomes 

= C t′	′ ( ) = ξ 2

2mω0 

exp (−γ / 2 sin) ω0t . (7.131)eg

3)	 For strong damping γ >> 2ωi , Ω  is imaginary and we can re-write the expression in an 

overdamped form 

eg′′ ( )  2

2m 
=
ω0

2 (−Λt )	 (7.132)C t  ∝ ξ Λ exp 

ω0
2 

where Λ =  . (7.133)
γ 

This is the correlation function for the Gaussian-stochastic model. 

Absorption lineshapes are calculated as before, by calculating the lineshape function from the 

spectral density above. This model allows a bath to be constructed with all possible time scales, 
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by summing over many nuclear degrees of freedom, each of which may be under- or over-

damped. In the frequency domain: 

ω γ  ω
C� ′′ ω = C� ′′ ω = ξ . (7.134)( ) ∑ ( ) ∑ 2 

= 
m ( i − ) +

( ) 
i ( )

eg eg i, i 2 2 2 2 2i i ω ω ω γ ω 

. 


