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4.3. EINSTEIN B COEFFICIENT AND ABSORPTION CROSS-SECTION 

The rate of absorption induced by the field is 
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The rate is clearly dependent on the strength of the field.  The variable that you can most easily 

measure is the intensity I, the energy flux through a unit area, which is the time-averaged value of 

the Poynting vector, S 
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(Note, I’ve rather abruptly switched units to cgs). Using this we can write


2ˆ ⋅w = I ω k ε μ A δ ω  −ω , (4.59)( kA )kA 3
4 
c 
π 
= 

2

2 ( )  

where I have also made use of the uniform distribution of polarizations applicable to an isotropic 
1 2field: E x̂⋅ = E y  ˆ⋅ = E ẑ⋅ = . An equivalent representation of the amplitude of a 0 0 0 E03


monochromatic field is the energy density 


I 1 2U = =  E0 . (4.60)
c 8π 

which allows the rates of transition to be written as 

w ( )  (4.61)= B U ωkA kA kA 

The first factor contains the terms in the matter that dictate the absorption rate. B is independent of 

the properties of the field and is called the Einstein B coefficient 

4π 2 
2 . (4.62)BkA = 2 μkA3= 

22You may see this written elsewhere as B = (2 3= )π , which holds when the energy density kA μkA 

of a wave is expressed in Hz instead of angular frequency. 
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If we associate the energy density with a number of photons N, then U  can also be written in a 

quantum form 

E0
2 =ω3 

N=ω = U = N 2 3  . (4.63)
8π π c 

Now let’s relate the rates of absorption to a quantity that is directly measured, an 

absorption cross-section α: 

α = 
total energy absorbed / unit time


total incident int ensity (energy / unit time / area )

=ω ⋅ w =ω ⋅ B U  (  )  ω


= kA = kA kA (4.64)
I  cU  ωkA


4π 2


( )  
2 =ω 

= μkA = BkA =c c 

More generally, you may have a frequency-dependent absorption coefficient α ω ∝ Bk ω( )  A ( ) 
= kA ( )  ) is a unit normalized lineshape function. The golden rule rate for absorption B g  ω where g(ω

also gives the same rate for stimulated emission.  Given two levels m and n : 

w = wnm mn 

nm (  )  ω = B U  ( )  nm ω U ( )  mn (4.65)B U nm nm ω since U ( )  nm = ω 

B = Bnm mn 

The absorption probability per unit time equals the stimulated emission probability per unit time.   

Also, the cross-section for absorption is equal to an equivalent cross-section for stimulated 
emission, (  )  = αα A nm ( )  SE  mn 

. 
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We can now use a phenomenological approach to calculate the change in the intensity of 

incident light, due to absorption and stimulated emission passing through a sample of length L 

where the levels are thermally populated.  Given that we have a thermal distribution of identical 

m is higher in energy than n :non-interacting particles, with quantum states such that the level 

k 
dI 

= − Nn αA dx  + Nm αSE  dx  (4.66)
I 

dI 
= − (N −N )α dx  (4.67)

I n m 

Here Nn and Nm  are population of the upper and lower states, but expressed as a population 
densities. If N is the molecule density, 

⎛ e−βEn ⎞
Nn = N ⎜ ⎟ (4.68)

⎝ Z ⎠ 

Integrating (4.67) over a pathlength L we have 

T = 
I 
= e−ΔNαL (4.69)

I0 

≈ e−NαL : −3 α : cm  2 :N cm  L cm  

We see that the transmission of light through the sample decays exponentially as a function of path 

length. ΔN = Nn − Nm   is the thermal population difference between states. The second expression 

comes from the high frequency approximation applicable to optical spectroscopy, but certainly not 

for magnetic resonance: N N .Δ ≈  Written as the familiar Beer-Lambert Law:  

A = − log I 
= εCL  . (4.70)

I0 

C : mol / liter ε :liter / mol cm 
ε = 2303 N α 


