THE RELATIONSHIP BETWEEN U(t,to) AND Cn(t)

For a time-dependent Hamiltonian, we can often partition

$$
H = H_0 + V(t)
$$

 H_0 : time-independent; $V(t)$: time-dependent potential. We know the eigenkets and eigenvalues of H_0 :

$$
H_0|n\rangle = E_n|n\rangle
$$

We describe the initial state of the system $(t = t_0)$ as a superposition of these eigenstates:

$$
\left|\psi\!\left(t_{0}\right)\right\rangle\!=\!\sum_{n}\!c_{n}\left|n\right\rangle
$$

For longer times *t*, we would like to describe the evolution of $|\psi\rangle$ in terms of an expansion in these kets:

$$
|\psi(t)\rangle = \sum_{n} c_n(t) |n\rangle
$$

The expansion coefficients $c_k(t)$ are given by

$$
c_k(t) = \langle k | \psi(t) \rangle = \langle k | U(t, t_0) | \psi(t_0) \rangle
$$

Alternatively we can express the expansion coefficients in terms of the interaction picture wavefunctions

$$
b_k(t) = \langle k | \psi_I(t) \rangle
$$

(This notation follows Cohen-Tannoudji.) Notice

$$
c_{k}(t) = \langle k | \psi(t) \rangle = \langle k | U_{0} U_{1} | \psi(t_{0}) \rangle
$$

= $e^{-i\omega_{k}t} \langle k | U_{1} | \psi(t_{0}) \rangle$
= $e^{-i\omega_{k}t} b_{k}(t)$

so that $|b_k(t)|^2 = |c_k(t)|^2$. Also, $b_k(0) = c_k(0)$. It is easy to calculate $b_k(t)$ and then add in the extra oscillatory term at the end.

Now, starting with

$$
i\hbar \frac{\partial |\psi_I\rangle}{\partial t} = V_I | \psi_I\rangle
$$

we can derive an equation of motion for b_k

$$
i\hbar \frac{\partial b_k}{\partial t} = \langle k | V_I U_I | \psi_I (t_0) \rangle \qquad \psi_I (t_0) = \sum_n b_n |n\rangle
$$

inserting $\sum_n |n\rangle \langle n| = 1$ $= \sum_n \langle k | V_I | n \rangle \langle n | U_I | \psi_I (t_0) \rangle$
 $= \sum_n \langle k | V_I | n \rangle b_n (t)$
 $i\hbar \frac{\partial b_k}{\partial t} = \sum_n V_{kn} (t) e^{-i\omega_{nk}t} b_n (t)$

This equation is an exact solution. It is a set of coupled differential equations that describe how probability amplitude moves through eigenstates due to a time-dependent potential. Except in simple cases, these equations can't be solved analytically, but it's often straightforward to integrate numerically.

Exact Solution: Resonant Driving of Two-level System

Let's describe what happens when you drive a two-level system with an oscillating potential.

$$
V(t) = V \cos \omega t = Vf(t)
$$

This is what you expect for an electromagnetic field interacting with charged particles: dipole transitions. The electric field is

$$
\overline{E}(t) = \overline{E}_0 \cos \omega t
$$

For a particle with charge q in a field \overline{E} , the force on the particle is

$$
\overline{F} = q \overline{E}
$$

which is the gradient of the potential

$$
F_x = -\frac{\partial V}{\partial x} = qE_x \implies V = -qE_x x
$$

qx is just the *x* component of the dipole moment μ . So matrix elements in V look like:

$$
\langle k | V(t) | \ell \rangle = -q E_x \langle k | x | \ell \rangle \cos \omega t
$$

More generally,

$$
V=-\overline{E}\cdot\overline{\mu}.
$$

So,

$$
V(t) = V \cos \omega t = -\overline{E}_0 \cdot \overline{\mu} \cos \omega t.
$$

$$
V_{k\ell}(t) = V_{k\ell} \cos \omega t = -\overline{E}_0 \cdot \overline{\mu}_{k\ell} \cos \omega t
$$

We will now couple our two states $|k\rangle + |\ell\rangle$ with the oscillating field. Let's ask if the system starts in $\ket{\ell}$ what is the probability of finding it in \ket{k} at time *t*?

The system of differential equations that describe this situation are:

$$
i\hbar \frac{\partial}{\partial t} b_{k}(t) = \sum_{n} b_{n}(t) V_{kn}(t) e^{-\omega_{nk}t}
$$

=
$$
\sum_{n} b_{n}(t) V_{kn} e^{-i\omega_{nk}t} \times \frac{1}{2} (e^{-i\omega t} + e^{+i\omega t})
$$

$$
i\hbar \dot{\mathbf{b}}_k = \frac{1}{2} \mathbf{b}_\ell \mathbf{V}_{k\ell} \left[e^{i(\omega_{k\ell} - \omega)t} + e^{i(\omega_{k\ell} + \omega)t} \right] + \frac{1}{2} \mathbf{b}_k \mathbf{V}_{k\ell} \left[e^{i\omega t} + e^{-i\omega t} \right] \qquad (2)
$$

\n
$$
i\hbar \dot{\mathbf{b}}_\ell = \frac{1}{2} \mathbf{b}_\ell \mathbf{V}_{\ell\ell} \left[e^{i\omega t} + e^{-i\omega t} \right] + \frac{1}{2} \mathbf{b}_k \mathbf{V}_{\ell k} \left[e^{i(\omega_{\ell} - \omega)t} + e^{i(\omega_{\ell} + \omega)t} \right] \qquad (3)
$$

\nor
\n
$$
\left[e^{-i(\omega_{k\ell} + \omega)t} + e^{-i(\omega_{k\ell} - \omega)t} \right] \qquad (4)
$$

We can drop (2) and (3). For our case, $V_{ii} = 0$.

We also make the **secular approximation** (rotating wave approximation) in which the *honresonant terms are dropped.* When $\omega_{k\ell} \approx \omega$, terms like $e^{\pm i \omega t}$ or $e^{i(\omega_{k\ell} + \omega)t}$ oscillate very rapidly and so don't contribute much to change of c_n .

So we have:

$$
\dot{\mathbf{b}}_k = \frac{-i}{2\hbar} \mathbf{b}_{\ell} \ \mathbf{V}_{k\ell} \ \mathbf{e}^{i(\omega_{k\ell} - \omega)t} \tag{1}
$$

$$
\dot{\mathbf{b}}_{\ell} = \frac{-i}{2\hbar} \mathbf{b}_{k} \ \mathbf{V}_{\ell k} \ \mathbf{e}^{-i(\omega_{k\ell} - \omega)t} \tag{2}
$$

Note that the coefficients are oscillating out of phase with one another.

Now if we differentiate (1):

$$
\ddot{\mathbf{b}}_k = \frac{-i}{2\hbar} \left[\dot{\mathbf{b}}_\ell \ \mathbf{V}_{k\ell} \ \mathbf{e}^{\mathbf{i}(\omega_{k\ell} - \omega)t} + \mathbf{i}(\omega_{k\ell} - \omega) \mathbf{b}_\ell \ \mathbf{V}_{k\ell} \ \mathbf{e}^{\mathbf{i}(\omega_{k\ell} - \omega)t} \right]
$$
 (3)

Rewrite (1):

$$
b_{\ell} = \frac{2i\hbar}{V_{k\ell}} \dot{b}_k e^{-i(\omega_{k\ell} - \omega)t}
$$
 (4)

and substitute (4) and (2) into (3), we get linear second order equation for b_k .

$$
\ddot{b}_k - i(\omega_{k\ell} - \omega)\dot{b}_k + \frac{|V_{k\ell}|^2}{4\hbar^2}b_k = 0
$$

This is just the second order differential equation for a damped harmonic oscillator:

$$
a\ddot{x} + b\dot{x} + cx = 0
$$

x = e^{-(b/2a)t} (A cos μ t + B sin μ t) $\mu = \frac{1}{2a} \left[4ac - b^2 \right]^{1/2}$

With a little more work, we find $(n-1)$

remember
$$
b_k(0)=0
$$
 and $b_{\ell}(0)=1$)

$$
P_{k} = |b_{k}(t)|^{2} = \frac{|V_{k\ell}|^{2}}{|V_{k\ell}|^{2} + \hbar^{2} (\omega_{k\ell} - \omega)^{2}} \sin^{2} \Omega_{r} t
$$

$$
\Omega_{R} = \frac{1}{2\hbar} \Big[|V_{k\ell}|^{2} + \hbar^{2} (\omega_{k\ell} - \omega)^{2} \Big]^{1/2}
$$

$$
P_{\ell} = 1 - |b_{k}|^{2}
$$

Amplitude oscillates back and forth between the two states at a frequency dictated by the coupling.

Resonance: To get transfer of probability amplitude you need the driving field to be at the same frequency as the energy splitting.

Note a result we will return to later: Electric fields couple states, creating coherences!

On resonance, you always drive probability amplitude entirely from one state to another.

Efficiency of driving between ℓ and k states drops off with detuning.

