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QUANTUM DYNAMICS1 

The motion of a particle is described by a complex wavefunction ψ ( r ,  t  )  that gives the 

probability amplitude of finding a particle at point r  at time t . If we know ψ ( ) , how does itr , t0

change with time? 
? 

ψ r ,t( ) → ψ r, t( ) t > t00 

We will use our intuition here (largely based on correspondence to classical mechanics) 

We start by assuming causality: ψ ( ) ψ t precedes and determines t .( )0

Also assume time is a continuous parameter:   


lim ψ (t
) = ψ ( ) t0t →t 0 

Define an operator that gives time-evolution of system.   

ψ t( ) = U t, t( )ψ t( ) 0 0 

This “time-displacement operator” is similar to the “space-diplacement operator” 

ik(r −r0 )ψ(r ) = e ψ (r0 ) 

which moves a wavefunction in space.  

U  does not depend on ψ . It is a linear operator.   

if t0 = a1 + a2 ϕ( t0 )ψ ( )  ϕ1 ( t0 ) 

ψ ( )t = U  t,  t0 ) ψ ( t0 )( 

= a U  t,  t0 ) + a  U  t,  t0 )1 ( ϕ1 ( t0 ) 2 ( ϕ2 ( t0 ) 

= a t  t1 ( )  a2 ( )ϕ  +  1 ϕ2 

From Merzbacher, Sakurai, Mukamel
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while ai t( )  typically not equal to ai(0) , 

∑ a (t) = ∑ a (t )n n 0 
n n 

Properties of U(t,t0) 

Time continuity:  U t, t( )= 1 

Composition property: U t2 ,t ( 2, t )U t( )= U t ( 1,t0 ) (This should suggest an exponential form). 0 1 

( )U t1,tψ (t ) = U t2, t ( )ψ(t0 )2 1 0
Note: Order matters! 

= U t2, t( )ψ t( )1 1

( )U t∴U t,t ( 0, t)= 10

∴U−1 ( t, t ) = U t , t ) inverse is time-reversal ( 00 

Let’s write the time-evolution for an infinitesimal time-step, δt. 

lim U t 0 + δt, t ) = 1( 0tδ →0 

We expect that for small δt , the difference between U t0 ,t ) and U t0 + δt,  t  0 )  will be linear ( 0 ( 

in δt . (Think of this as an expansion for small t):   

U t0 + δt,  t  ) = U t  ,  t  ) − Ωδ  t( 0 ( 0 i0 

Ω  is a time-dependent Hermetian operator.  We’ll see later why the expansion must be complex.   

Also, U t0 + δt,  t  0 ) is unitary. We know that U-1U = 1 and also( 
† (U t0 + δt,  t  ) U  t  + δt,  t  ) = (1+ Ω δ  t )(1− Ωδ  ≈  1( 0 i † i t )0 0 

We know that U t  + δt,  t  ) = U  t  + δt,  t  U t,  t  ) .( 0 ( ) ( 0 
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Knowing the change of U during the period δt allows us to write a differential equation for the 

time-development of U t,t( ). Equation of motion for U :0

d U  t,  t0 ) lim U  t  + δt,  t  ) − U  t,  t0 )( ( 0 (
= 

tdt δ → 0 δt 

lim U t  + δt,  t  ) −1  U t,  t0 ) (  (
= 

tδ → 0 δt 

The definition of our infinitesimal time step operator says that 

( ( i  1 iU t  + δt,  t  ) = U  t,  t  ) − Ωδt =  − Ωδt . So we have: 

∂U t, t( 0) = −iΩU t, t( )
∂t 0

You can now see that the operator needed a complex argument, because otherwise probability 

amplitude would not be conserved (it would rise or decay).  Rather it oscillates through different 

states of the system.   

Here Ω has units of frequency. Noting (1) quantum mechanics says E = =ω  and (2) in classical 

mechanics Hamiltonian generates time-evolution, we write 

HΩ = Ω can be a function of time! 
= 

∂t 
U t,t0 ( )  eqn. of motion for Ui= ∂ ( )= HU t,t0

Multiplying from right by ψ ( ) givest0

∂
i= ψ = H ψ

∂t 
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We are also interested in the equation of motion for U† . Following the same approach and 
† t, trecognizing that U ( ) acts to the left:   0

ψ( t ) = ψ ( t0 ) U† ( t,  t0 ) 

we get 

†−i= 
∂
∂ 

t 
U† ( t,  t0 ) = U ( t,  t  ) H0 

Evaluating U(t,t0): Time-Independent Hamiltonian 

Direct integration of i= ∂U ∂t = HU suggests that U can be expressed as: 

( )= exp
 
−

= 
H t − t0 

U t,t0  
i (  ) 

Since H  is an operator, we will define this operator through the expansion: 

 iH  −i 2 H t  − t0 ) 
2 

1     ( 
+…exp − ( t − t0 ) = +

−iH ( t − t0 ) +     
 =  =     2= 

(NOTE: H commutes at all t .) 


You can confirm the expansion satisfies the equation of motion for U . 


For the time-independent Hamiltonian, we have a set of eigenkets: 

H n  = E n n n = 1∑
n 
n 

So we have 

U t,  t0 ) = ∑exp  −iH t  − t ) / = n n(  ( 0  
n 

= ∑ n exp  −iE  ( t − t ) / = n n 0  
n 

So, 




 
n n  

�

n c  

= ψ  

( ) = 
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( )tψ ( )0U  t,  t  = ( )0tψ 

n 

= ∑ ( )  ( )0 n 0 
it  exp  E  t  t− ψ −  =�	�

( )n 0c t  

= ∑ ( )n t ( ) ( ) ( )n n 0 n 0c t  c t  exp  i  t  t=  − ω  −   
n 

Expectation values of operators are given by 

( )A t  ( ) ( )t A t= ψ  ψ  

( ) ( ) ( ) ( )†0 U  t,  0  AU  t,  0  0ψ 

For an initial state ψ 0 cn 0( )∑ n 
n 

m ni t i t* 
m ncA c m m A n e n n+ ω= ∑ 

n,m 

m  e  − ω  

* −ωnmt= ∑c c  A  em n  mn  
n,m 

* = ∑c t c  t  A  m ( )  ( )  n  mn  
n,m 

What is the correlation amplitude for observing the state k  at the time t ? 

c t  k  t  = k  U  t,  t0 ) ψ( t0 )k ( ) = ψ( )  ( 
− ωn ( t −t0 )i= ∑ k n  n  eψ ( )t0 

n 

Evaluating the time-evolution operator: Time-Dependent Hamiltonian 

If H  is a function of time, then the formal integration of i= ∂U ∂t = HU  gives 

U t,  t  ) = exp  
−i 

∫t0
H t′( )dt  ′ 

( 0 
 = 

t 

 

Again, we can expand the exponential in a series, and substitute into the eqn. of motion to 

confirm it; however, we are treating H  as a number.   
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t
( )=1 −

= 
i
∫t0 

H t′ 
2! =  t0 

t ′ t′′U t, t ( )dt′ + 
1  −i

2 

∫ 
t 

dt′′H( )H( ) +…0

NOTE: This assumes that the Hamiltonians at different times commute! H t′( ) , H t′′) = 0(  

This is generally not the case in optical + mag. res. spectroscopy.  It is only the case for special 

Hamiltonians with a high degree of symmetry, in which the eigenstates have the same symmetry 

at all times. For instance the case of a degenerate system (for instance spin ½ system) with a 

time-dependent coupling. 

Special Case: If the Hamiltonian does commute at all times, then we can evaluate the time-

evolution operator in the exponential form or the expansion. 

( , 0  ) = −
i 
∫

t
H t′   ∫ ∫t0 

′′ ( ) H t′′) +…U t t 1 ( )dt′ +
1  −i 

2 
t
dt′

t
dt H t′ (

t0 t0= 2! =  

If we also know the time-dependent eigenvalues from diagonalizing the time-dependent 

Hamiltonian (i.e., a degenerate two-level system problem), then: 

U t,  0 ) = ∑ t′  
j 

j exp 

− 

= 
i 
∫

t 
ε j ( )dt′ j( 

t0  

More generally: We assume the Hamiltonian at different times do not commute. Let’s proceed 

a bit more carefuly: 

Integrate ∂ U t,  0 ) =
−i H t  U t,  0 )( 
= 

( )  (
∂t 

( 0

t
To give: U t,  t  ) = −

i dτ H ( ) U (τ, 0 )τ1 
= ∫t0 

This is the solution; however, U t,t( ) is a function of itself. We can solve by iteratively0

substituting U into itself. 

First Step: 

( 0 1 
= t

t

0 

i τ
U t,  t  ) = −

i 
∫ d H ( ) 1− ∫ d H ( ) U (τ′, 0 )τ τ  τ′ τ′  

t0  = 
t t τ

τ τ 


−i 
 

2 

∫ ∫t0
d H ( ) H (τ′) U (τ′, 0 )= +  −i 


 ∫ d H ( )  dτ τ′ τ1  t0 =  t0  =  
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Next Step: 

τ	 τU t,  t  ) = + 


−i 

 ∫

t
d  H  ( )

t0 
(	 0 1 

 =  

τ −i 
2 

t
dτ d  H  ( ) H (τ′)+  ∫ ∫t0 

τ′ τ 
t0 =  

+ −i 
3 

t
dτ

τ
dτ′∫

τ′ 
dτ′′H ( ) H (τ′) H (τ′′) U (τ′′,  t0 )	  ∫ ∫  τ 

t0 t0t0 =  

From this expansion, you should be aware that there is a time-ordering to the interactions.  For 

the third term, τ ′′ acts before τ ′ , which acts before τ : t0 ≤ τ ′′ ≤ τ ′ ≤ τ ≤ t . 

Notice also that the operators act to the right.   

This is known as the (positive) time-ordered exponential.   

U t, t ) ≡ exp+ 
−i 

∫t

t

0 

dτ H ( ) = T exp  ∫ dτ H ( )
t0 

(	 0 
 = 

τ 

 ˆ 


− 

= 
i t 

τ 
 

∞  −i 
n

t τ t 
= + ∑ dτ ∫t0 

dτn …∫t0 
dτ1 H ( ) H (τ )…H (τ1 )1 

n 1   =  ∫t0 
n	 τn n −1 

= 

t
Here the time-ordering is: 


0 → τ1 → τ2 → τ 3 .... τ → t
n 

t0 → … τ ′′ → τ ′ → τ 

Compare this with the expansion of an exponential:   

∞	 t
1+ ∑ 1  −i 

n 

∫
t
dτn …∫ dτ1 H ( ) H (τ )…H (τ1 ) 	 τn n −1t0n 1 n! =  t0= 

Here the time-variables assume all values, and therefore all orderings for H τ( )are calculated.  i

The areas are normalized by the n! factor. (There are n! time-orderings of the τn  times.) 

We are also interested in the Hermetian conjugate of U t,t(	 0 ), which has the equation of motion 
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∂ U t,  t0 ) =
+i U t,  t  ) H  t  )† ( 0 (

∂t
† ( 

= 

If we repeat the method above, remembering that U† (t, t0 ) acts to the left:   

ψ( t ) = ψ ( t0 ) U† ( t,  t0 ) 

† t
then from U† ( t, t  ) = U ( t  , t  ) +

i d  U† ( t,  τ) H (τ) we obtain a negative-time-orderedτ0 0 0 = ∫t0 

exponential: 

U t,  t  ) = exp  − 
 
= 
i 
∫t

t

0 

dτ H ( )† ( 0 τ 





∞ i τn τ2

= + ∑  t

t

0 
dτn 1 τ1 21  

n 

∫  ∫  t0 
dτn −1 …∫ dτ H ( ) H (τ )…H (τn ) 

n 1   = t0= 

Here the H τ i( )act to the left.   


