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5.74 TIME-DEPENDENT QUANTUM MECHANICS 

The time evolution of the state of a system is described by the time-dependent Schrödinger 

equation (TDSE): 

ψ r , t ( )i= ∂ ( ) = Ĥ ψ r , t
∂t 

Most of what you have previously covered is time-independent quantum mechanics, where we 

mean that Ĥ  is assumed to be independent of time:  Ĥ = H rˆ( ). 

We then assume a solution of the form: 

ψ (r , t)= ϕ r ( ) 

1 ∂ ( ) = H r ( )  

( )T t
ˆ ( )ϕ ri= T t

( ) ∂t ϕ rT t ( )  

Here the left-hand side is a function of t  only, and the right-hand side is a function of r only. 

This can only be satisfied if both sides are equal to the same constant, E 

Time-Independent 
Schrödinger Eqn. 

H r
∴ 

( )
( )

= E ⇒ H r ( ) = Eϕ r 
ˆ( )ϕ r ˆ ( )ϕ r ( )

ϕ r 
H is operator corresponding to E 

Second eqn.: 

1 ∂T  ∂ iEi= = E ⇒ T t( ) = 0
T t( ) ∂t  ∂t 

+ 
=  

Solution: T t( )= Aexp(−iEt / =)= Aexp(−iωt) 
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rSo, for a set of eigenvectors ϕ ( ) with corresponding eigenvalues En , there are a set ofn 

corresponding eigensolutions to the TDSE. 

r , tψ ( )= a ϕ (r) exp(−iω t) ω = E / = n n n n n n 

The probability density 

∫ *P = ψ (r, t)ψ (r , t)d

may be time dependent for ψ ( r ,  t  ) , but is independent of time for the eigenfunctions ψ ( r , t  ) . 

ψ r , t( )r = ψ r , t( )

n 

Therefore, ϕ r( ) are called stationary states. 

However, more generally a system may be represented as a linear combination of eigenstates:   

− iω tϕψ (r , t)= ∑c ψ (r , t) = ∑ c e n (r)n n n n 
n n 

For such a case, the probability density will oscillate with time:  coherence. 

e.g., two eigenstates 

−iω 1t + c2ϕ2e
− iω2 tψ (r, t)= c1ϕ1e

2 2 * − i(ω2 −ω1 t ) + c * +i (ω 2 −ω )t*p t( ) = ψ ψ = c1ϕ + c2ϕ + c1 c2ϕ
*ϕ2e c1ϕ

*ϕ1e1 2 1 2 2 

probability density oscillates as cos(ω2 −ω )t1 

This is a simple example of coherence (coherent superposition state).  Including momentum (a 

wavevector) of particle leads to a wavepacket. 

1 
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TIME EVOLUTION OPERATOR 

More generally, we want to understand how the wavefunction evolves with time.  The TDSE is 

linear in time.  Since the TDSE is deterministic, we will define an operator that describes the 

dynamics of the system:   

ψ (t) =U t, t0( )ψ (t0 ) 

For the time-independent Hamiltonian:   

( )+ 
iH 

ψ r , t
∂

ψ r , t ( )= 0  (1)
∂t = 

To solve this, we will define an operator T = exp(−iHt / =), which is a function of an operator. 

A function of an operator is defined through its expansion in a Taylor series:   

1  iHt 
2 

T = exp[−iHt =] = 1 −
iHt 

+
2!  =  − " 

= 
= f H( )  

1Multiplying eq. 1 from the left by T − = exp(iHt / =)we have: 

∂
∂ 
t  

 exp iHt  ( ) 
 = 0 = ψ r , t
 

integrating t0 → t : 

( ) − exp iHt0 ψ r , t0exp iHt ψ r , t ( )= 0 =   =  

( )= exp 
 
 

−H t  − t0 ( )= U t, t0 ψ r, t0ψ r, t
(  )

 

ψ r, t0 ( ) ( )

 =  

For functions of an operator A : Given a set of eigenvalues and eigenvectors of A , i.e., 

Aϕ = a ϕn , you can show by expanding the function as a polynomial that f ( ) ( )ϕÂ ϕ = f an n n n n 



p. 4 

∴ ψ (r , t) = e − En (t − t0 )/ =ψ (r, t0 )n n 

or, alternatively, if we substitute the projection operator (identity relationship) 

−iH t −t0 ) / =(U t,  t  ) = e ∑( 0 n En nω = ni n ( t− ω  −  t0 ) = = ∑e 

nϕ  ϕ

ϕ  ϕ  n n 
n 

This form is useful when ϕ are characterized; we’ll develop U t, t0( ) more later. So now we n

can write our time-developing wave-function as  

i n ( t− ω  −  t0 )ψ ( r , t  ) = ϕ ∑e ϕ ψ ( r , t  0 )n n n n 
n 

i n ( t− ω  −  t0 )cn ( )= ϕ ∑e t0n 
n 

Time-evolution of a coupled two-level system (2LS) 

It is common to reduce or map problem onto a 2LS.  We then discard remaining degrees of 

freedom, or incorporate them as a heat bath, H H0 + Hbath  .= 

Let’s discuss the time-evolution of a 2LS with a time-independent Hamiltonian.   


Consider a 2LS with two (unperturbed) eigenstates ϕ and ϕb  with eigenenergies ε and εb ,
a a

which are then coupled through an interaction Vab . V ε+ 
ϕa εa

H = a ε a + b εb b + a Vab b + b Vba aa 
2∆

 εa Vab  = Vba εb 
 

ϕb εb 

ε 

*Since the Hamiltonian is Hermetian, (Hij = Hji ), we suggest 
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* iVab = Vba = Ve  − φ  

Ve−iφ ε a 
iH =


 Ve+ φ  εb 

 

If we define the variables 

ε + εbaE = 
2 

ε − εba∆ =
2 

Then we can solve for the eigenvalues of the coupled systems:   

ε± = E ± ∆2 + V 2 

Because the expressions get messy, we don’t choose to find the eigenvectors for the coupled 

system, ϕ± , using this expression. Rather, we use a substitution where we define: 

V
tan 2θ = 2θ∆ 

∆ 
(0 < θ < π/2) 

−iφ 1  tan  2  θe 
= 

i
H E  I  + ∆ 

 tan 2 θe+ φ  −1 
 

We now find that we can express the eigenvalues as 

ε± = E ± ∆ sec2θ 

We now want to find the eigenstates of the Hamiltonian, ϕ H± , = ε±ϕ± ϕ± 

where e.g. = c ϕ + cb :ϕ+ a a ϕb 

i /  2  i /  2  cos θ e− φ  sin θ e φϕ =

ϕ =
+ ϕ  +  a ϕb 

i /  2  i /  2  −sin θ e− φ  cos θ e φ 
− ϕ  +  a ϕb 

ϕ =1Orthonormal complete + orthogonal:  a ϕ + ϕa b ϕb 

V 
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Examine the limits:   

(a) Weak coupling (V/∆ << 1).  Here θ ≈ 0, and ϕ+  corresponds to ϕ  perturbed by the Vaba

interaction.  corresponds to . (For θ → 0 → ϕ ; → )ϕ− ϕb ϕ+ a ϕ− ϕb 

(b) Strong coupling (V/∆ >> 1). Now θ = 45º, and the a/b basis states are indistinguishable.  

The eigenstates are symmetric and antisymmetric combinations: 

ϕ ± ϕ~ 1 ( )ϕ± b a2 

Whether + or − corresponds to the symmetric or asymmetric combination depends on whether V 

is positive or negative. (For −V >> ∆, θ = −45°) 

We can schematically represent the energies of these states:   

∆ 

ε+ 

-ε 
εb 

aε 

ε−Ε 

These eigenstates exhibit avoided crossing. 
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The time-evolution of this system is given by our time-evolution operator.   

e− ω+ (t − t0 ) ϕ+ − e− iω− (t− t0 ) ϕU t, t0 + ϕ( )= ϕ + − 

ω ± =
ε± 

= 

Now ϕ  and ϕb  are not the eigenstates—preparing ϕ  will lead to time-evolution!   a a

ϕ .Let’s prepare the system so that it is initially in state a 

(t0 = 0) ψ(0) = ϕa 

What is the probability that it is found in state ϕb  at time t ? 

22 
tPba ( ) = ϕb ψ t( )  = U t, t0( )ϕϕb a 

To evaluate this, you need to know the transformation from the ϕa,b  to the ϕ±  basis, given 

above. This gives: 

tPba ( ) = 
V 2 

V 2 

2 sin2 ΩRt + ∆

where the Rabi Frequency ΩR = 
1 

∆2 + V2 

= 

ΩR  represents the frequency at which probability amplitude oscillates between ϕ  and ϕb  states.a

V2 

2 

ba ( )  
V2 + ∆

P t  

0 t = R 

t 
π/Ω

Notice for V → 0 ϕ± → ϕa,b  (the stationary states), and there is no time-dependence.   

V π =π
For V >> ∆ , then ΩR = and P =1 after t = = . 

= 2ΩR 2V 
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TIME-INDEPENDENT HAMILTONIAN 

There are two types of values that we often calculate:   

Correlation amplitude: C t( ) = βϕ t( )  

measures the resemblance between the state of your system at time t  and a target state 
(β . The probability amplitude P t) = C t( )2 

for a set of eigenstates ϕn 

C t  = β t = β U  t,  t0 )( )  ψ ( )  ( ψ (0) 
−ωjt c m* = ∑ j e j n cm n 

m,n , j 

* − ωni t= ∑c c em n  
n 

Expectation values: A t( )  = ψ t( )Aψ (t) 

−ωn tψ ( )  =t ∑e c ϕ =∑c ϕn n n n 
n n 

−ω mt *ψ t( ) = ∑e cm ϕm 
m 

E − En m 
* −iω t ϕ ω = nm nmA t( )  = ∑c c e Aϕm n m n = 

m,n ω − ωn m 

* t t= ∑c ( )c ( )Am n mn 
m,n 
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DENSITY MATRIX 

For a system described by a wavefunction = ∑c ( t ) n we showedψ ( t ) n 
n 

A t( ) = ψ (t)Aψ (t) 
* t= ∑c ( )c ( ) m A ntm n 

n, m 

We will often find it useful to define a density operator 
ρ t( )≡ ψ (t) ψ (t) 

* t t= ∑c ( )c ( ) n mn m 
n,m 

m (by definition)= ∑ρnm ( ) nt
n,m 

ρ  are the density matrix elements.  Substituting, we see that n m  

A t( ) = ∑ A ρ (t)mn nm 
n,m 

= Tr Aρ t[ ( )] 

( ( ( 

2) invariant to unitary transformation    Tr S AS ) = Tr A 

Trace Properties: 1) cyclic invariance Tr ABC )= Tr CAB) = Tr BCA ) 

( † ( )  

Pure vs. Mixed States 

Why would we need the density matrix?  It helps for mixed states.  

1) pure states: a system characterized by a wavefunction (previous page) 

2) mixed states: not characterized by single wavefunction 

> statistical mixtures—ensemble at thermal equilibrium


 > independently prepared states 


> no phase relationship between elements of mixture 
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For an ensemble of systems with a probability pk  of occupying quantum state kψ , with 

∑ pk = 1 
k 

( )  = ∑pk ψk ( t )A t  A  ψk ( t ) 
k 

t tρ( ) ≡ ∑p ψk ( )  ψk ( )t k 
k 

( )  = Tr  Aρ( )A t   t  

Properties: 

ρ*1) 	 ρ is Hermetian = ρnm mn 

2) 	 Tr(ρ)=1 Normalization 

Tr ρ 2( )=1 for pure state 
3) 

< 1	 for mixed state 

Let’s look at the density matrix elements for a mixture:   

ρ =  n mρ = ∑p n mnm k ψk ψk 
k 

kwhere ∑c nϕ =k n

n


kc	 : expansion coefficient for n 

eigenstate n of wavefunction k 
k	 kc= ∑p cn ( )* 

k m 
k 

* = c c coefficients for eigenstate averaged over mixture n m  

Diagonal elements (n = m) 

2k *ρ = ∑p c  =c  c  = pnn k n n n n 
k 

probability of finding a system in mixture in state n 

 POPULATION (≥ 0) 
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Off-Diagonal Elements (n ≠ m) —complex—have phase factor 

describe the evolution of coherent superpositions.   

 COHERENCES 

For an arbitrary state χ , the expectation value of the density matrix: 

χ ρ χ 

gives the total probability of finding a particle in the pure state χ  within the mixture.   

We will sometimes refer to the density matrix at thermal equilibrium ρ0 ( or ρeq), which is 

characterized by thermally distributed populations in the quantum states 

−βEn 

ρ =  p = 
e 

nn n Z 

where Z is the partition function. More generally, the density matrix can be defined as 

−βH 

ρ =  
e 

Z 

where Z = Tr(e−βH). For H n = E n  ,n 

n |  e  −βHρ =  | mnm 

−βEn= e δnn 
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TIME-EVOLUTION OF DENSITY MATRIX 

Follows naturally from definition of ρ  and T.D.S.E. 

∂ 
ψ =

−i i∂ †H ψ ψ = ψ H (H = H)
∂t = ∂t = 

∂ρ ∂  ∂
ψ  ψ  

∂ =   = ψ ψ + ψ ψ∂t ∂t   ∂t ∂t 

−i i 
= H ψ  ψ +  H 

= = 
ψ  ψ  

∂ρ −i 
= [H, ρ]

∂t = 

Liouville-Von Neumann Eqn. 

For a time-independent Hamiltonian:   

ρnm ( ) =t n ρ( t m  = n ψ ( t ) ψ ( t m) ) 

( −ωn ( t t0 )−t = U  t,  t0 ) ψ ( t0 ) = ∑ n  e  n  ψ ( t0 )ψ ( )  
ni 

t − ωn ( t−t0 )i + ω  m ( t −t0 )iρ ( ) = e n ψ ( )  ψ ( )nm t0 t0 m  e  

i= e− ωnm ( t−t0 )ρnm ( )t0 

E − En mω =nm = 

Populations: ρ ( ) = ρnm ( t0 )     time-invariant tnn 

Coherences:  oscillate at energy splitting ωnm


