
    

 

 
   

 
 

 

 

 

     

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.73 Quantum Mechanics I 
Fall, 2018 

Professor Robert W. Field 

FINAL EXAMINATION 

This is an open book, open note, open computer, unlimited time exam.  You may talk to each 
other to clarify what the questions mean, but not how to answer them. 

You may choose to answer either Question 2 or 3.  If you have time and energy to 
provide some fragmentary insights into the other problem, you will receive up to 10 points 
extra credit! 

Name: 

GRADING: 

I. /60 points 

II. /40 points (or 10 points extra credit) 

III. /40 points (or 10 points extra credit) 

TOTAL: /100 points (plus 10 points extra credit) 

answer one or the other 
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I. Aufbau for Adults 

Consider the following problems of spectrum identification and prediction. 

A. You have an absorption spectrum and you do not know whether it comes from 
atomic C, N, or O.  You do not have access to a table of energy levels or assigned 
spectral lines.  What are the features in the spectrum that would enable you to 
conclusively identify the “carrier” of the spectrum? 

Here are the rules: 

a. The atom starts out in its ground electronic state.  You cannot rely 
on any state being initially populated other than the lowest L–S–J 
state predicted by Hund’s rules. 

b. The selection rules for electronic transitions are ∆ℓ = ±1.  This is 
consistent with 
∆L = 0, ±1, ∆S = 0, ∆J = 0, ±1.  An off-diagonal matrix element of 
HSO between same-configuration, same-J, ∆L = 0, ±1, ∆S = 0, ±1 
states could make certain ∆S ≠ 0 transitions weakly observable. 
The intensity “borrowed” by a nominally forbidden transition is 
directly related to the level shifts of both the "borrowing" and 
"lending" state. 

14N, c. The nuclear spins of 12C, 16O are I = 0, 1, and 0 respectively. 
You can use the presence or absence of hyperfine structure to 
make assignments, but you must make some predictions about the 
qualitative nature of the hfs. 

d. You can use the Zeeman effect in a variety of ways to identify the 
states involved in a transition.  If you do so, you must calculate g-
values. 

e. The Landé interval rule should prove very helpful.  If you use it, 
you should calculate the relative intensities of transitions to 
different 
J-components of an S ≠ 0, L ≠ 0 multiplet state.  The transition 
intensities come from the 1-electron form of the transition 
operator, T(1)[r], where r is the electron coordinate.  This has ∆ℓ = 
±1 selection rules.  Z-polarized light excites ∆mℓ= 0 transitions. 

You should answer this question by identifying the unique spectroscopic signature 
of each of the three atoms.  I am looking for quality (very specific diagnostics) 
rather than quantity (vague, qualitative statements). 
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B. Isoelectronic and isovalent comparisons.  The energy level diagrams for two 
atoms with the same number of valence electrons will resemble each other, but 
the scale parameters 
[εnℓ, Fk , Gk , ζnℓ] will be systematically and predictably different. 

!
I 

(i) How would the spectra of C– , N, and O+ compare? Make plausible 

! 
J 

arguments about how each of the scale parameters would change. 

! 
F 

(ii) How would the spectra of Si, P, and S compare to the spectra of C, N, and 
O, respectively?  Again, be as specific (and ingenious) as you can about 
how you expect all of the scale parameters to change. 

C. A transition from the N atom ground state to one of the 4P states belonging to 
either the 2s2p4 or the 2s2 2p2 3s configuration is excited. 

(i) How would you be able to tell to which configuration the 4P state belongs? 

(ii) The transition is excited with a  1fs light pulse.  There will be quantum 
beats in the 4P–4S fluorescence.  Be as specific as possible about the fine 
structure (J = 5/2, 3/2, 1/2) and hyperfine structure ( = + ) 
contributions to the quantum beat spectrum.  Be as specific as you can be 
about frequency ratios and the relative intensities of the various beat notes. 
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II. Effective Core Potentials (Pseudopotentials) 
 

It is often useful to simplify a many-electron problem to a one-electron problem, for 
example, that the active electron moves in the semi-empirically defined effective 
potential of the ion-core.  In this problem you will use a one-dimensional ordinary 
differential equation solver to define Zeff(r) for the Ca2+ 1S and Ca+ 4s 2S ions using the 
experimentally known quantum defects for the ns, np, and nd Rydberg series of Ca+ and 
the 4snℓ 1L (ℓ=0, 1, 2) Rydberg series of Ca. 
 
The radial Schrodinger equation, expressed in atomic units is 

 

  

   

d 2u
dr 2 + 2E − 2V (r)− ℓ ℓ+1( )

r 2

⎡
⎣⎢

⎤
⎦⎥
u = 0

u(r) = rR(r).
 

 
E is the binding energy of the electron (the zero of energy is set at the ionization 
threshold) 
 

 

   

V (r) = −Z eff (r) / r

V
ℓ
(r) =V (r)+ ℓ(ℓ+1)

2r 2

 

 
where, for Ca+, 
 
   

� 

Z +
eff (r ) = 2 + 18(1 + ar)e−br ,  a ≥ 0 and b≥ 0  

 
which has the required limiting behavior 
 

 
  

� 

Z +
eff (0) = 20

Z +
eff (∞) = 2.

 

 
The b parameter determines the overall size of the Ca2+ ion-core, and the a parameter 
permits   

� 

Z +
eff (r ) to exhibit some remnant of “shell structure.”  Initially, you should 

set a = 0 and vary b to obtain a Vℓ(r) that gives the correct (i.e. empirically determined) 
quantum defect for the Ca+ ns Rydberg series. After deriving an approximate value for b, 
you will adjust both a and b to match the quantum defects for the Ca+ np and Ca+ nd 
Rydberg series 
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E a.u.( ) / hc = 2ℜ = 2(109737.32 cm−1)

E(Ca+ nℓ) hc = – 4ℜ

n−µ
ℓ

+( )2

µs
+ = 1.806

µ p
+ = 1.454

µd
+ = 0.627

 

 
For the Ca 4s nℓ 1L Rydberg series, the effective potential of the Ca+ 4s 2S ion-core could 
be parametrized as 
 

  
   
V
ℓ
(r) = −Zs

eff (r) / r + ℓ(ℓ+1)
2r 2  

 
where 
 

 

  

� 

Zs
eff (r ) = Z +

eff (r ) + (e−cr −1)
Zs

eff (0) = 20
Zs

eff (∞) = 1
 

 
This form for   

� 

Zs
eff (r ) treats the effect of the 4s electron as simply additive to the effective 

potential of Ca2+.  The c parameter will be much smaller than the b parameter because the 
radius of the 4s orbital will be much larger than that of the Ca2+ ion-core.  Once you have 
optimally described   

� 

Z +
eff (r ) by adjusting a and b to fit the Ca+ nℓ Rydberg quantum 

defects, you should adjust c to fit the Ca 4s nℓ 1L quantum defects: 
 

 

   

µs = 2.931

µ p = 1.944

µd = 0.911

E Ca 4s nℓ 1L( ) hc = − 1ℜ

n−µ
ℓ

( )2

 

Here is the procedure that I propose you follow.  Use an Ordinary Differential Equation 
solver, and you MAY collaborate with each other in making the ODE solver work. 
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A. Choose an initial value for the b parameter and set a = 0.  You should choose the 

initial value of the b parameter large enough so that   

� 

Z +
eff (r ) is between 2 and 3 at 

r = 9.9 × 10–11m, which is the “official” ionic-radius of Ca2+. 
 
 Solve the 1-particle radial Schrödinger equation for Ca+ 8s.  The boundary 

conditions are uℓ(0) = 0 and uℓ(∞) = 0.  You are looking for an ℓ = 0 eigenstate 
with seven internal nodes.  Once you find the 8s eigenstate, you need to adjust b 
so that the eigen-energy is 

 

 
  

� 

E8s /hc = −4ℜ/ 8 −µs
+( )2

= −438949.3  cm −1 8 −1.806[ ]−2

= −11441 cm −1 .
 

 
 This will be an iterative process.  Once you have found a satisfactory value for b 

with a = 0, repeat the iterative variation of b starting with a = 1.  When you are 
done you will have two pairs of a,b values that give the correct energy for the Ca+ 
8s state. 

 
 Then use the two pairs of a,b values to compute the energy of the Ca+ 8p state (six 

internal nodes).  Both of the calculated energies are likely to be slightly incorrect.  
Devise (and explain) an iterative strategy so that you are able to find a pair of a,b 
values that gives the correct energy for both Ca+ 8s and Ca+ 8p. 

 
    

� 

E8p = −4ℜ 8 −µp
+[ ]−2

.  

 
 If, after ~1 hour of effort, your strategy does not yield acceptable values for 

Ca+ 8s and 8p states, stop working on problem II here!  
 
 Now your   

� 

Z +
eff (r ) function should be pretty close to perfect.  Test this by 

computing the energy of the Ca+ 8d state (5 internal nodes). 
 
  

� 

  

� 

E8d = −4ℜ 8 −µd
+[ ]−2

.  
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B. (Optional).  Now that you have determined an empirically optimized   

� 

Z +
eff (r ) for 

Ca+, determine   
 
    

� 

Zs
eff (r ) = Z +

eff (r ) + e−cr −1( )  

 
 for Ca 4s nℓ (ℓ = 0,1, and 2).  Optimize the c parameter in the above equation to 

obtain the correct energy for the Ca 4s 8s 1S state, 
 

  
  

E Ca 4s 8s 1S( ) hc = –ℜ 8−µs
⎡⎣ ⎤⎦

−2

µs = 2.931.
 

 

 Once you have done this, check this   

� 

Zs
eff (r ) function to see how well the 

Ca 4s 8p 1P and 4s 8d 1D states are predicted.  If the results for 4s 8p and 4s 8d 
are unsatisfactory, suggest a plausible reason for the discrepancy. 

 

Closing comment:  A similar effective core potential method could be used to find the energies 
of the outside-core electronic states of a charged metal solid sphere, a charged metal hollow 
sphere, or a charged quantum dot. 
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III. Wavepacket Dynamics in Atomic Rydberg-Land. 
 

I am going to lead you through a simplified version of the experiment described in the 
attached paper, “Nonexponential Decay of Autoionizing Shock Wave Packets” by Thoma 
and Jones [Phys. Rev. Let. 83, 516 (1999)]. 
 
The purpose of this problem is to develop the dual skills of describing the evolution of 
Ψ(t) as a specific linear combination of eigenstates and of describing the time–dependent 
pictures of wavepackets in motion.  Words and concepts rather than elaborate equations 
will be sufficient to answer most of these questions. 
 
The relevant energy level structure of Ca and Ca+ is summarized in the level diagram: 

 

 
Two nanosecond lasers are used to selectively populate one of several 4s nd 1D2 eigenstates, in 
the range of 24 < n < 33.  A femtosecond laser pulse (393nm) excites the 4s electron to the 4p 
orbital.  The frequency of this transition is expected to be very close to that of the 
Ca+ 4p 2P3/2 ← 4s 2S excitation (74720 - 49306 cm–1 or 393nm).  The spectral width of the 200fs 
pulse is sufficiently narrow so that 4p 2P1/2 ← 2S1/2 is not excited.  The excitation probability for 
Ca+ 4s ← Ca 4s nd (direct excitation of the nd electron into the ionization continuum) for the 
Rydberg electron is negligibly small (because of n–3-scaling).  The short pulse excitation causes a 
transition from Ca 4s 4d to a coherent superposition of Ca 4p nd eigenstates.  Thus Ψ(0) is a 
coherent superposition of quasi-eigenstates: 

Ca+ 3d

4s2 1S0

393nm (nanosecond excitation)

423nm (nanosecond excitation) 4p � 4s

0 cm–1

nd � 4p

4s 4p 1P1

4s nd 1D2

4p nd

4d nd

23652 cm–1

49197 to 49097 cm–1

63017 to 62956 cm–1

Ca+ 4s

2P3/2
2P1/2

Ca+

PUMP 393nm (200 fs) 4p � 4s
49306 cm–1

autoionize to Ca+ 3d and 4p 

autoionize to Ca+ 4s and 3d and 4p 

PROBE 318nm (fs) 4d � 4p
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 Ψ(0) =

n
∑ cn 4 p nd . 

 
These are quasi-eigenstates because they can decay by “autoionization” into the continua 
of Ca+ 4s + εℓ (ℓ = odd) and Ca+ 3d + ε′ℓ′ (ℓ′ = odd) via matrix elements of 1/r12.  The 
energies of these |4p nd〉 quasi-eigenstates can be taken to be given by a simplified 
Rydberg formula (neglecting quantum defects): 
 
 

  
E4p nd = E Ca+4 p 2P3/2( )− hc ℜ / n2. 

 
For specificity, let 32 ≤ n ≤ 37 (six states) and let |Cn| be 6–1/2 for all six n values. The 
200fs 393 nm PUMP pulse launches a wavepacket that, at t = 0, is identical to the nd 
orbital in the |4s nd〉 initial eigenstate.  The outer lobe of this wavefunction is located near 
(but not at) the outer turning point of the |4p nd〉 quasi-eigenstates.  The wavepacket will 
evolve in a way that you will need to figure out.  The oscillation period is called the 
Kepler period.  Note that if you choose wavefunction phases so that the innermost lobe is 
always positive, the outermost lobe will exhibit a phase that oscillates with principal 
quantum number, in this case (–1)n. 
 
A. For the 32 ≤ n ≤ 37 wavepacket, what is the Kepler period, Tk? 
 
 At different times during a Kepler period the way in which the wavepacket 

created by the 393nm 200fs PUMP pulse is affected by the 318nm 200fs PROBE 
pulse changes.  The PROBE pulse acts on the inner (4p) electron.  The 4d ← 4p 
transition amplitudes from all of the quasi-eigenstate components are in phase 
when the wavepacket has returned to its original form at t = 0, Tk, 2Tk and mostly 
out-of-phase at t = Tk/2, 3Tk/2, … 

 
B. For the 32 ≤ n ≤ 37 wavepacket at t = Tk/2, describe the time-dependent amplitude 

of each of the quasi-eigenstate n-components in Ψ(Tk/2).  Be explicit about the 
phases of the innermost and outermost lobes of each n-component. 

 
 When the initially created wavepacket is at its t = 0, Tk, 2Tk form, its rate of 

autoionization into the Ca+ 4s + εℓ (ℓ = odd) and Ca+ 3d + ε′ℓ′ (ℓ′ = odd) continua 
will be different from when it is at its t = Tk/2, … form.  εℓ is the kinetic energy of 
the ejected ℓ electron.  Figure 2 of the attached paper suggests that the 
autoionization rate is minimized at t = 0, Tk, 2Tk and reaches one or two maxima 
during each Kepler period.  The autoionization is due to matrix elements of 1/r12.  
The inner part of the nd Rydberg orbitals is most important in determining the 
magnitude (scaling as n–3/2) of 

   
4p nd 1/ r12 3d ′ε ′ℓ  and 

   
4p nd 1/ r12 4s εℓ  

matrix elements. 
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C. Explain the oscillations in the autoionization rate of the 4p nd wavepacket.  I will
be very impressed by an explanation that accounts for the two maxima in the
autoionization rate during each Kepler period.

The 318nm 200fs PROBE pulse excites 4d n′d ← 4p nd [via Ca+ 4d ← 4p] (the 
quantum defects for the 4d n′d and 4p nd quasi-eigenstates are slightly different). 
This new wavepacket also autoionizes.  The autoionization signals due to the 
PUMP by itself and the PUMP + PROBE are distinguished via the kinetic energy 
of the ejected electrons, so the systematically time-delayed PROBE pulse is 
capable of sampling the population in the PUMP-produced Ψ(t), with 
approximately 400fs time resolution. 

If there were no autoionization from the PUMP-produced wavepacket, there 
might still be a delay-time dependence of the PROBE-induced excitation 
probability. 

D. Derive an expression for the delay-dependent PROBE excitation rate.  Explain
your assumptions in deciding whether the excitation rate is maximal at:

(i) t = 0, Tk, 2Tk or
(ii) at t = Tk/2, 3Tk/2, … or
(iii) independent of t.

This is related to your answer to part B. 

The article on Pages 11–14 has been removed due to 
copyright restrictions. See Thoma, J.E. and R.R. Jones. 
"Nonexponential Decay of Autoionizing Shock Wave 
Packets." Physical Review Letters. 83 (1999): 516–519.
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