Supplement #1 to Lecture #27

Angular Momentum Eigenvalues (from lecture notes by Professor Dud-
ley Herschbach)

Consider any Hermitian operator J whose components satisfy the following

commutation rules

[Ja, Jy] = ihJ,
and the cyclic permutations thereof. Equivalently, the rules may be written
as
Jx ] =ih]
or as
[JZ7 Jm] = Zﬁz 5€ann
where

Eomn = +1 if £, m,n are in cyclic order
= —1if /,m,n are in anti-cyclic order

= 0 if any two of £, m,n are the same.
Seek to find eigenvalues \ for J? and p for J, such that

T2 ) = A )

S |\ A) = p[Ap) -
Since J? and J, are Hermitian, A and p are real, and | Au) are the simultaneous
eigenvectors which render J2 and J, simultaneously diagonal.

First show \ > p?
Proof: (Ap|J? — J2| dp) = X — i

But
J—JE= T I -
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Mo T2 A = T Ny (N | T A
Myt S———

M JI Ny and JI = J,

= Z |\ || N i)? — 0 and similarly for J2 term.
Ny

So
Mo J2H T A =A—p*>0 Q.E.D.

Since p? > 0 this also implies A > 0.

It is convenient to use the non-Hermitian operators
Je=J.+iJ,  NoteJJ =7 J =J.
These satisfy
[J., Je] = £hJL since [J,, J, £1iJ,] = ihJ, £i(—ihJ,)
= h(J, £iJ,) = hJy.
Apply this to [Au) and find
(Jody = Jed2) [ M) = £hJy |Aw)
or

J(Je (M) = (JeJo £ hJL) |Aw)
= (pEM)(Jx |A))  since J. [Ap) = plAp) .

Thus J [Ap) is an eigenvector of J, with eigenvalue p=+h. Hence J, “raises”
the eigenvalue of p to p+ h and J_ “lowers” the eigenvalue of pu to p — h.
Now note

[J?, J4] =0

since J? commutes with its components J, and .J,. Thus
TH(Jx (M) = Jx T2 M) = AT [Ap)).

——

A Aw)
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Thus Jo |A\u) remains an eigenvector of J? with the same eigenvalue \ as
[ Aw).-

By repeated application of J, we can get eigenvectors with J, eigenvalues of
i+, g+ 2k, ... but the same eigenvalue X of J2. Since u? > A, for a given
A there must be some highest value of p, call it uy, such that Jy [Auy) =0
rather than generating a new eigenvector of still higher J,—eigenvalue. Simi-
larly, repeated application of J_ gives u— h, u— 2h, ... but would eventually
violate p? < X unless there is some lowest value of u, call it p,, such that
J_ [ Aug) = 0.

Now we use these conditions to show u, = —uy. Consider applying J_ to
Ji |Aun) = 0. Note the identity:

T Je = (Jy — i) (s +iJ,)
=2+ J +il s, J]
=J?—J*—hlJ..
Thus
J_ Ty (M) = (A= pjy — ) [ M) = 0.
Taking the matrix element with (Auy| we find

A — pf — by, = 0.

Similarly,
Jod- i) = (J2 = T2 + BI.) [ue)
leads to
A — 12 4 fiprg = 0.
Hence

A= pn(pn + h) = pe(pe — 1)

(. S
~~

Two solutions: pup = —py
or up = pg — h but this second solution
must be rejected since p was assumed to
be larger than .
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Now we can conclude also that p, = py + nh where n is some integer. This
follows since, if we start from |Ap,) and apply J, repeatedly, we obtain the

sequence of eigenvectors:

Mae),  Te[Ane), T3 Aue), o TE ) = )
~——  —— e—— ——
He peth He+2h petnh=pp
Thus
fn = = = e +nh
or
n n
= —hou, = +—h
e 9 y M + 9
where n = 0,1,2,... is some integer (related to the value of \).

For convenience, we write

where j = 2, with j =0,1,1,2,2,...

Then eigenvalues of J, are —jh, (—j + 1)h,...jh

~
2j+1 different values
Eigenvalues of J? are given by

A= pn(pn + h) = pe(pe — h) = jh(jh + h) = —jha(—jh — h)
A=j(j+ 1A
Also, it is convenient to label the eigenvectors by 7, m rather than A, i, so
JHgm) = j(j + 1)h* |jm)
J. |jm) = mh|jm) .
Comments
We derived the above eigenvalues using only the commutation property and

the Hermitian property. We find that both integer and half-integer values of

7 and m are allowed.
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Actually, we have solved a much more general problem than that posed by
the orbital angular momentum of a particle. Thus, for several particles in

the same central force field, the total angular momentum,
i

also satisfies these relations, even if the particles interact with each other.
Spin angular momenta likewise satisfy these relations.

For orbital angular momentum, L = ¢ X p must require, in addition, that the
system returns to its original state u;de; a rotation by 27. Such a rotation
takes p—=p and q—=qsogxXp—=qgxp and hence the eigenvectors of L?

and L, must be unchanged:

—i2nJ. /R

e ‘jm> — €—i27rm ’jm>

e~?™ — 41 if m is integer and hence integer eigenvalues are acceptable for

—i2rm — _1 and hence are not acceptable

L?, L,. Half-integer values give e
for orbital angular momentum.
Half-integers do apply for spin angular momenta, which are not constructed
from any ¢ x p and thus can take on both integer and half-integer eigenvalues.
This illustNratEs the power of operator derivation. A more general case would
not have been included if we had used wave mechanical methods and repre-
sentations by differential operators.

We have shown that, for a fixed j value,
Jylgm) = ap |j,m + 1) and J_ |jm) = b, [j,m — 1),

where a,, and b, are constants, possibly complex numbers. The proportion-

ality constants are simply related to each other, since

*

Ay = <j7m+1“]+’jm> = <jm|Ji\j,m—|—1> = /@D;mj—@bj,mﬂ dr
~—~ —
J_ bm+1%j,m

:b*

m+1
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Now, to evaluate a,,, consider the identity
J_J.=J"—J*—hlJ..
Apply this to |jm), then you have

J_Jy|gm) = apJ_|j,m+ 1) = apnbyy |jm) = ]am\2 ljm)
J2— T2 =R, |jm) = (§(5 + 1) — m? —m)h? |jm) .

Hence

am = [j(j + 1) — m(m + 1)]"/2he'*™

(j—m)(j+m+1) < another common way of writing it,

where €™ is an arbitrary phase factor. The usual convention is to take
¢ = 0; this fixes the relative phases of the vectors |jm) having different
values of m but the same j.

The only non-vanishing matrix elements of J, and J_ are:

(G,m 4+ 1T [jm) = G,m|J_|j,m+ 1) = [j(§ + 1) — m(m + 1)]*/*h

lways the lower times the
higher of the two m—values in

Or you can write this alternatively as the matrix element

(G m’| T [gm) = [ + 1) — m(m + 1)]?h6; j0mr mi1
(G | J_|gm) = [5G + 1) — m(m — )]0} 6, m—1
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List of non-zero elements:

jm|Jjm = j(j + 1)k “add the bigger m to j and
(ml ] jm) 5 subtract the smaller”
JmiJz|Jm) =1m

A

Gom £ 1 Jeljm) = [ + 1) —m(m £ V)]Y2h = [(j £m + 1)(j Fm)]Y*k

1 1
= §(J+ +Jo), Jy= E(‘]Jr —J2)

(Gym 1] aljm) = 5[ +1) — m(m + 1)]'/*h

S

DO | —

1
Gy 1y jm) = 205 + 1) = m(m £ 1)]"*h

We can summarize elements of J,, J,, J. by:

gmlJlgm = zZmh

1
Jom £ 1 Iljm = (& +ig)5[i( +1) = m(m £ 1A

Comment

Thus we have found all matrix elements of J with eigenvectors [jm) of J?, J..
These eigenvectors and their properties are important, since any time we have
a system of particles isolated in free space, their total angular momentum
J?.J, commutes with the total Hamiltonian, no matter what kind of forces
hold the system together (central or not). That is, the total angular momen-
tum of an isolated system is a constant of the motion in quantum mechanics,
just as in classical mechanics.

Hence it is important to be able to take matrix elements of other operators

in the angular momentum states which characterize an isolated system.

Examples
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MOMENTA AS DISPLACEMENT OPERATORS:

Geometrical Meaning of Commutation Rules
Linear Momentum

Let |z1) be an eigenvector of the position operator X with eigenvalue z1, i.e.
X |l’1> =T |I1> .

Consider the new state vector defined by e~"@=/% |z1); we might ask whether

it is also an eigenvector of X. To find out, evaluate

X (e’i“pz/ﬁ ]a:1>) — e lapz/h (X |z1)) + [X, e’iapl/h] 1)
—_—— Y——-—

z1|x1)

Now

Thus

X (e ay)) = e P=/M(X +a) |11) = e P/ M2y + a) |z1)
= (z1 +a) (efmpz/h |£L‘1>) .

Hence e~/ |2,) is indeed an eigenvector of X with eigenvalue z;+a instead
of 1. The unitary operator e ?=/" formed from the linear momentum oper-
ator p, acts as a displacement operator for x position coordinates. Similarly,
py generates displacements of the y coordinate and p, of the z coordinate.

It is a geometrical fact that linear displacements of a point commute. For

example:
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fzyz

Y4 b first move along x

71,9 I by a, then along y

— —q a
|2a1s) = € ibpy /h g —iapa [h l21y1) = . by b
a
Yy A T2Y2
bI reverse the
_ e—zapz/he—szy/ﬁ |x1y1> = 1l . order

The same result is obtained by applying displacements in either order. This

agrees with [p,,p,] =0 (and {p,,p,} = 0).

Angular momentum

L, L,, L, operators generate angular displacements or rotations; e.g.,

o—i0La/h

gives a rotation by angle ¢ about the x—axis, etc. However, geometrical

rotations about different axes do not commute. For example, z

consider a state representing a particle on the z—axis, |29). Now

—iTLy/h —iT Lo/l

e e |z0) = particle on —y axis

. V . o
rotation by m/2  rotation by /2

about y-axis about z—axis T,
But
e i3 La/N e~ Lu/M| 20) = particle on +x axis
~—— —_—
rotation by 7/2 rotation by /2
about z—axis about y—axis » T

The results of these two rotations taken in opposite order differ by a rotation
about the z—axis. Thus, because the rotations about different axes don’t
commute, we must expect the angular momentum operators, which generate

these rotations, not to commute with each other. Indeed,

Ly, Ly =ihL,

10
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corresponds to the above example, in which the commutator of rotations
about the z and y axes depends on a z—axis rotation.

Rotational Transformation Properties and Selection Rules
The various observables of a dynamical system can be classified according
to their transformation properties under rotations. This is of great value in
determining the matrix elements of the corresponding operators and, in par-
ticular, leads to selection rules which limit the number of non—zero matrxix
elements.

o-J /h

Under action of the rotation operator U = e~ ™" an operator O is trans-

formed according to

A scalar operator § is one which is invariant to this transformation (e.g., the

Hamiltonian of an isolated system). Hence, for a scalar operator
syt =g
or
Uus—-Su=0 or [U,S]=0.

Thus, a scalar commutes with every rotation operator. Consider, in partic-

ular, an infinitesimal rotation d¢, for which

1
=1+ —dp-J.

Since the direction of d¢ is arbitrary, S must commute with each component

of J, or [S, J] = 0. As shown below, this property leads to the selection rules
Aj=0, Am=0

for the non-zero matrix elements of a scalar operator.
A vector operator V is one with three components, V,, V,,, V, which transform

under rotations like the coordinates of a point. For an infinitesimal rotation,

, i i
=(1+-do- 1——do-J).

1"
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Now note that if the position vector 1’ is obtained from 7 by rotation through
a small angle d¢ about an axis in the direction of the vector d¢, we have, to
first order in do,

r'=r+dpxr

and so

V=V 4 dg x V.
Hence, if terms in (d¢)? are neglected, we obtain
l
s =4 (o0-2) v (-]

Since d¢ is arbitrary, this relation gives the commutator of V' with any com-

ponent of J. Thus, if d¢ = €2 is a rotation about the z—axis, we find

h ~ ~
or
(1., V] = —ili(2 x V) or [J., V,] = —ih(=V,) = ikV,
[)., V] = —ili(=V,) = —ihV,
[JZJ ‘/tz] -
etc.

In this way we obtain a set of nine commutation rules:

[J:ra Vy] = ihV, [Jy> Vy] =0 [Ju Vy] = _ihvy
[Jx, VZ] = —iﬁVy [Jy, VZ] = ihV, [Jz, VZ] =0

The selection rules for non-zero matrix elements of a vector operator, i.e. an
operator which satisfies the above rules (e.g., position r, linear momentum

p, the angular momentum J itself) are shown below to be given by

Aj =0and *£1 for all components of

12
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with

Am =0 for V,
Am = %1 for Vu =V, £V,

Scalar Operators, S!
Defined by [S, J] = 0, for all three components of .J. Corollary is [S, J?] = 0

and [S, J,] = 0. If we take the matrix elements, we have

Jm|[S, Jljm =0
= §'m/|SJ* — J2S|im
=1 (j'm/|S5(j +1) = 5'(j +1)S|jm)
=[5 +1) — 5’ (" + V)] (G'm|S|gm) .

Also,

(G'm([S, J.][jm) = 0
= (j'm'|SJ. — J.S|jm)
= h{j'm/|Sm — m'S|jm)
= h(m —m') (§'m/|S|jm) .
Therefore, (j'm’|S|jm) must vanish unless j = j/ and m’ = m'. “Selection
rules” for non-zero elements are: Aj =0 and Am = 0.
Let sj, = (ym|S|jm) denote the non-vanishing element. Since this is the
only non-zero matrix element, |jm) is an eigenvector of S, i.e. S|jm) = sj, |jm).

Now we can show that the eigenvalues of the scalar operator S don’t depend

on m. Since S commutes with J. = J, £ 1.J,, we have
S (J4 ljm)) = JLS|jm) = sjm (J+ [m)) .

But J4 [jm) is proportional to |j,m + 1) and still has some eigenvalue s,
of S. We could continue this with J? — m +2,... and with J_ — m — 1,

!These notes were prepared by Professor Dudley Herschbach of Harvard University

13
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J? — m—2, etc., and would get the same eigenvalue 5jm of S for all m states

of a given 5. Hence we would obtain
('m[S]jm) = (GIIS117) 05 O’
where (7||S]|7) is called a reduced matrix element, a number that does not
depend on m.
The above equation only describes the properties of S which are associated
with its scalar character. In general, the states of the system will depend
upon other quantum numbers in addition to j and m. If these are denoted
collectively by «, the scalar operator need not be diagonal in «, so the general
statement becomes
(oj'm’|Slagm) = (o'j[| Sl ) 655G
for
5. = 0.
Vector Operators, V
Definition: A vector operator V with respect to the angular momentum J

is any set of three operators V,,V,, V., that satisfy the following com-

mutation rules:
[Ji, Vil = ihzé?ijkvk gijk = 1,145k cyclic
k

= —1,45k anti-cyclic
= 0, any two subscripts the same

This is shorthand for

oy V] =0 [y, Vil = —ihV.  [J,Vi] = ihV,,
[Je, Vi) = iRV [Ty, Vil = [J, Vi) = —ihV,
[Jo, Va] = —ihV,  [J, V] = ihVs [J2, V] = 0.
It is convenient to use
Vi=V, £V, VT:%(VJF—FV_); V;,:%(VJF—V_).

14
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Selection Rules for m

Consider the commutators involving J,, take matrix elements of the commu-

tators:
a) [, V] =0
Gm!| Ve = Vode|gm) = (§'m!|m'RV, = Vomh|jm) = h(m/—m) (G'm/|V.]jm)
Thus (5'm/|V,|jm) = 0 unless m' = m, Am =0
b) [J., Vi] = [Js, Ve + iV, ] = iRV, +i(—ihV,) = AV,
(J'm/| .V = Vi d.|gm) = h{§'m/|Vi|jm).
or
A(m” —m —1) (§'m/|V]jm) = 0
(y'm/|Vi]jm) = 0 unless m' —m = +1, Am = +1
¢) Similarly, [J,,V_] = —hV_ and
(g'm/|V_|jm) =0 unless m' —m = —1, Am = —1

Selection Rules for j

To find the selection rules for j, we want to examine commutators of V' with
f. For this, some vector identities are useful. First we show

(1) JxV+V xJ=2ihV.

This relation is another way to define a vector operator. It states that,
because of the non-commuting algebra of quantum mechanics, J x V #

—V x J as would hold for ordinary vectors.

15
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0.0.1 Proof:

(L XV VX D)= D _(eind;Ve+ cidpch) ge-label viaj o k

gk Then use 5ijk = _5z‘jk
= iV — Vi)
j?k
. using the definition
B Zgijk[Jj’ Vil = Zﬁzgijkeww of a vector operator
gk jke

Note e;x€jie = €ijk€ejr as a cyclic permutation of subscripts leaves €;;;, un-
changed.
Then

factor 2 appears because both odd-odd
Z €ijk€ejk = 205 and even-even permutations give a
Jik contribution

So
(I XV +V x )i =2y 64V, =2ihV; QED.
L

Now we show

() [AV) = (Y x ]~ x V).

Proof:

[‘]27 Vil = Z[Ji2> 4

= {JlJ Vi + [T, Vi T}

[J2, V] = iﬁz Ji €ijk Vi + €iji Vi
| -~ =

=ih(—J xV+V x J); Q.E.D.
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It is convenient to define the operator

N | —

K= (Vx]-IxV).

This is Hermitian (since V and J are) and is a vector operator if V' is.
Then Equation (2) states
2. V] = 2ihK. 1)

However, we can’t yet use this commutator to get selection rules on V, since
the matrix elements of the commutator K would seem to bear no simple
relation to those of V. We will find that selection rules can be obtained from
an identity involving the double commutator,

(3) [ 125 Y]] = 2007 — 200 - V) + VI,

This can be proven by examining further the properties of K.
2L V] = 2002 K],
Since K is a vector operator, we have from (2) that
2 K] = ih(K x ] — ] x K).
Also, from Equation (1) we have
Jx K+ K x ] =2ihK.

Hence

Also, from equation (1)

[N(E

17
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Thus,

E Eijkdj€kem VoS Shift t0 €gnp = €gem since cyclic
jktm permutation of subscripts leaves ¢
unchanged

Z| zﬁ(sjm - zm ]K)l] ‘/ZJ Z(Jj‘/;‘]] - J]‘/;JZ)
jlm J
= > (Vi = S5, Vil = 3V, )
J
= J*V; =Y JjitiejiVe —(J — V) J;
%: ! Jf ==Y replace by —¢&;j¢,
\ ~ 4 a non-cyclic
permutation

+ih Y JigieVe = ih(] x V).

or

IxE =]V -(]V)]

Now we can use these results to simplify the double commutator,

% [, V] = 2ih[ %, K] = (2ih)(ih)(—1)(2] x K — 2ihK)
= 2h*(2J x K — 2ihK)
=202V = 2(J- V) — [1%, V]

~

——

18
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PV -V
and finally,
LIV = 207V —2(J- V) + V%) QED.

Now we can obtain selection rules by taking matrix elements of this relation.

Consider two cases:

Case I: Elements diagonal in j: Wigner-Eckart Theorem
g/ [ 72, Allgm = (Gm'i(5 +1)A = Aj(G + 1)|jm) = 0
for any operator A. Thus,
g/, 12 V]lgm: =0 =21 |2V = 2(] - V) + V. J?|jm
or

Wi(+1) gml|Vlim — jul|(]-V)dlim =0

-~

=Y |-Vl m" | J]im
] m//

The operator (J - V) is a scalar with respect to J and therefore diagonal in
both m and j, so that j” = j and m” = m/, and its matrix elements are

independent of m. Hence we find

. . -V .
jm'IL/|]m :m ]m/|‘N/|Jm

This is the Wigner-Eckart theorem for a vector operator.

19
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Powell & Craseman, page 371

. . aL-Yli o
il = e

Suppose V' precesses around J. The time averaged
value of the component normal to J is zero. The
time average of V' is therefore parallel to J and has

magnitude
J-V
I
J-V Hence, on this model, the average is
171 IV, (V)

The theorem is very useful, as it states that, for any vector operator V/,
the matrix elements diagonal in j are simply proportional to the corre-
sponding matrix elements of J itself. The proportionality constant, co(j) =
il(J- V)i / (Bj(j + 1)) is the same for all m-states. Therefore, we have
via the Wigner-Eckart Theorem:
(G.m 4+ 1Viljm) = co(7)[5( + 1) — m(m + 1)]"/2
(gm|V=]jm) = co(5)m
(ym = 1Vo]gm) = co(5)i (G + 1) = m(m — 1)]'/2
with ¢y(j) = (¢/j]|V]|aj) a reduced matrix element. In particular, we note

that all matrix elements of V' between j = 0 states vanish.

Case II: Elements non-diagonal in j

Now consider j' # j, again take matrix elements of Equation (3). LHS gives
JN I[P V] lgme = §w [TV = V) = (JV = VJ)J?|jm
= {0+ 1° =2+ Vi + 1) + 570G + 1D} G'm|[V]jm)

20
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RHS gives

207 (' |PV, = 2L - V)L AV m ) = 205 (7" + 1) + 5@+ 1} 5w ]im
——

drops out as  j'm/|J|jm =0, because j' # j.
Equating LHS = RHS and rearranging gives
{(G' =) =1H{(' +1+1)2 =1} Jm/|[V]jm =0

~—————

This factor > 0 since j' # j and j' > 0,5 > 0
Therefore

Jm/|V|im =0

unless (7' —j)?—1=0or j'=j £ 1.

The complete selection rules for any vector operator thus are:

Jm/|V|im =0 unless
j'=j#0 or j=j+1

and, for any 7', j
m' =morm' =m+1.

We have already found (page 19) the matrix element for j* = j. Now we will

doj =j+1

Consider [J4, Vi] = [J, +iJy, Vi +1iV]
= [Jo, Vol il e, Vi] 4 il dy, Vil = [y, V)]
! ! ! 3
0 1hV, —ihV, 0
= 0.

21
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Take matrix element and use (j,m 4 1|J.|j,m) = Alj(j + 1) — m(m + 1)]/
=BG +m+ 1) - D)

0= +1,m+ 14V = Vidiljm—1)
=+ 1L,m+1Je ] +1,m) (G +1,m|Vi]j,m—1)

where we use the Am = +1 selection rule for V; and J,.

This provides a recurrence relation for the matrix elements.

(+Lm+1Je|j+1,m) G+ 1,m|Vij,m—1) = (j+1,m+ 1V, |jm)
X (jm|Jy|j,m — 1)
A(j =m=T)(j +m +2)]"/? A(j=m=+T)(j +m)]"/?

So
G+1mViljm—1)  (G+1,m+1|Vi|j,m)

(j +m)l/2  (+m+2)12

This takes on a simple pattern if we divide both sides by (j 4+ m + 1)'/2:
—c (] m): <]+17m’V+|]7m_1> — <]—|—1,m+1\V+|j,m>
T TG mA DG Am)2 [ m 2)( + me+ D)2
= —c+(j,m + 1)

Since m was arbitrary, ¢, (j,m) = c;(j,m + 1) = ¢4 (j, any other m) so the
ratio ¢4 (j) must be independent of m. The m—independence of the matrix

element is therefore given by
G+ Lm+1Veljm) = —c ()G +m+2)(G +m+ 1],

with cy(j) = o,7+1||V]|er,7 a reduced matrix element that depends on
the detailed nature of V', not merely on its vector character. However, it can
be evaluated if the matrix element of V' can be evaluated for any single m
value, e.g., m = j or m = 0, for which the evaluation is often simpler than

in the general case.

22



Lecture #27 Supplement #1 Page 275(1)-23

Now determine the ;' = j + 1 elements of V; using the above result for V.
Start with

—2hVy; = [J_,V,] which expresses Vy in terms of J_ and V,,
whose matrix elements we now know.

—2h(j+ 1, m|Vzlj,m) = G+ 1,m|J_|j+1,m+1) G+ 1,m+ 1|V.|j,m)
— (G4 LmViljom — 1) Gom — 11 |j.m)
= Al +m+2)(J —m+ D" (= (GG +m+2)( +m+1)]"?
— Ti(—c (NG +m+ DG +m)]*[(G +m) (G —m+ 1))
= —hey () [(Am +2) = GAm)|( +m+1)(j —m+ 1))/
= —2hc, (H)[(j +m+1)(j —m+ 1)/

Thus,
G+ 1,m|Vzlj,m) = e, () +m + 1)(j —m~+ 1))/

Similarly, from

WV = [J_, V]

we find
G+ Lm—1V_|j,m) = c.(j)[(j — m+2)(j —m+ 1)]/2

Results for 7' = j — 1 are derived in analogous fashion and involve a third re-
duced matrix element, c¢_(j) = (o/,j — 1||V||e, 7). Hence the m—dependence
of a scalar or vector operator follows from its scalar or vector character only.
(Classification of operators by their transformation properties under rotation
can be extended to tensors of any rank. In each case the form of the matrix

elements is determined except for factors that depend on « and j.

23



Lecture #27 Supplement #1 Page 275(1)-24

SUMMARY: Non-zero Matrix Elements of a Vector Op-
erator, V/

Aj=+1 (G+1m+1Veljm) = Feir (NG £m+2)( £m+1)]"?
(G + Lm|Vgljm) = e, (DG +m+ 1) —m+ 1]

Aj=0 (om £ 1|Vi|im) = co(4)[(j £m + 1)(j F m)]"/?
(im|Vz|jm) = co(j)m

Aj=-1  (j—Lm=E1|Viljm) = £e_()[(j F m)(j Fm - D]'”
(j —1,m|Vz]im) = c_(5)[(j — m)(j +m)]"/?
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