
 
 

 
 
 
 
 

 
 

 
 

 
 
 
 

 

   

  
   

  

  
 

 
 

                                
 

 

 

    

    

5.73 Lecture #21 21 - 1 
3D-Central Force Problems I 

Read: C-TDL, pages 643-660 for next lecture. 

Every step toward greater complexity is classical mechanics plus a tiny 
bit of something new. 

All 2-Body, 3-D problems can be reduced to 
* a 2-D angular part that is exactly and universally soluble 
* a 1-D radial part that is system-specific and soluble by 1-D techniques in 
which you are now expert 

what is it? how do we use it? 

Next 3 lectures: ⎡Correspondence Principle⎤ all matrix elements without 
⎥⎯→ ⎢Commutation Rules 

⎯ actually doing any integrals ⎣ ⎦ 
Roadmap 

-1 1. define radial momentum p = r (q ⋅q – i!)r 

! ! !2. define orbital angular momentum L = q × p 

general definition of angular ⎛ ⎞ 
momentum and of “vector 

⎝⎜ 
also L × L = i!L and ⎡⎣Li ,L j ⎤⎦ = i!∑εijkLk ⎠⎟ operators” k 

23. separate p2 into radial and angular terms: p2 = pr + r−2L2 

4.  find Complete Set of Commuting Observables (CSCO) that is useful for “block-
diagonalizing” H 

[H, L2] = [H, Li ] =[L2 ,Li ] = 0 H, L2 , Li CSCO 

L, ML  universal basis set 
2 "2ℓ(ℓ +1)5. separate radial Hℓ(r) = 
pr + V(r) + effective radial 

part of H: 2µ 2µr2 potential 

Recover a 1-D Schrödinger Equation Vℓ (r) 

6. ALL Matrix Elements of Angular Momentum Components May be Derived from 
Commutation Rules. 

7. Spherical Tensor Classification of all operators. 
⇓ 

8. Wigner-Eckart Theorem → all angular matrix elements of all operators. 

I hate differential operators. Replace them by exclusively using simple 
Commutation Rule based Operator Algebra. 
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5.73 Lecture #21 21 - 2 
Lots of derivations are based on classical VECTOR ANALYSIS — much of that will be 
set aside as NON-LECTURE 

!
Central Force Problems: 2 bodies where interaction force is along the vector q1 − q !2 

1 

= q2 − q1q12 

= î(x2 − x1) + ĵ y( 2 − y1) + k̂ (z2 − z1)
1/ 2! 

r ≡ = [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 ]q12
origin 

also Center of Mass (CM) Coordinate system 

! ! ! 
q2 = q1 + q12
! ! ! 

!! r1 = q1 
! qcm − M ⎤⎦⎡⎣ r = m2r1 

" ! r2 = q2 
! qcm − M ⎤⎡⎣ ⎦r = m1r2 

H = Htranslation + Hcenter of mass
free translation motion of fictitious 
of C of M of 
system of mass particle of mass 
M = m1 + m2 m1m2µ = m1 + m2 

in coordinate system 
with origin at C of M (CTDL page 713) 

2 

LAB H! translation =
ptrans free translation of 

constant system with respect to2(m1 + m2 )
+ V

lab (not interesting)
1 2 motion of particle ofBODY H!CM = pcm + V (r )

2µ " mass µ with respect
free rotation to origin at center of 

! pcm 
is a vector dependence) mass 

This is p ! in CM frame, ! (no θ,φ 

not p of  CM 

2GOAL IS TO SIMPLIFY pCM 

because that is only place where the θ,φ degrees of freedom appear. 

2
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5.73 Lecture #21 21 - 3 
1.  Define Radial Component of p! CM 

Correspondence Principle: recipe for going from classical	 to quantum mechanics 
⎡* classical	 mechanics 
⎢ 
⎢* Cartesian Coordinates 
⎢* symmetrize to avoid failure to satisfy Commutation Rules ⎣ 

** verify that all three derived operators, p, pr, and L 
• are Hermitian 
• satisfy [q,p] = i!" 

Purpose of this lecture is to walk you through the standard vector analysis and 
Quantum Mechanical Correspondence Principle procedures 

! q ≡ ix̂ + ĵy + kẑ 

p ! ≡ ˆ + ˆip + ĵp kp x y z 

r ≡ ⎡⎣x2 + y2 + z2 ⎤⎦ 
1/2 

= ⎡⎣q ⋅ q⎤⎦ 
1/2 

=| q | 

find radial (i.e. along 
! 

pq) part of 
! 

!
project 

! 
qp onto 

θ% 

!q ! p 

q ⋅ p= q p cos θ 

q ⋅ p
cos q, p =(!) 

q p
θ 

q ⋅ p q ⋅ pradial component of p is p cosθ = p = 
rq pobtained by projecting !p onto q! 

pr = 

! 
= r−1

!
so from standard vector analysis we get pr q ⋅ p 

3
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5.73 Lecture #21 21 - 4 
This is a trial form for pr, but it is necessary, according to the Correspondence 
Principle recipe, to symmetrize it. 

1pr = [r−1(q ⋅ p + p ⋅ q) + (q ⋅p + p ⋅q)r−1] This will be simplified to 
4 almost what one expected from 

This expression arranges the terms in all CM. The only surprise must be 
possible orders! multiplied by !. That’s QM! 

NONLECTURE (except for Eq. (4)) 
SIMPLIFY ABOVE Definition to = r−1pr (q ⋅p − i!) (r is not a vector) 

! ![q,p] is a vector commutator —  be careful 

! q 

! ![q,p] =[x,px ]+ ⎡⎣y,py ⎤⎦ +[z,pz ] = 3i" 
! ! , ! p 

! q 
! p-! p 
! qbecause[ ][ ] ⋅ ⋅∴p ⋅q = q ⋅ p − =q,p 

3i! 
1 −1 ! ! ! ! −1pr = ⎡⎣r (2q ⋅p − [q,p]) + (2q ⋅p − [q,p])r ⎤⎦ (1)4 

1 ⎡ −1 
⎤ 

= ⎢r−14q ⋅p − r−12q ⋅p −1 − 6i&r ⎥
4 ⎢"$ $#$$$% + 2q ⋅pr 

⎥ (2) 
−1⎣ add and subtract 2r q⋅p ⎦ 

−1 3 −1 + 
1 −1= r q ⋅p − i&r 
2 
⎡⎣q ⋅p,r ⎤⎦2 (3) 

LEMMA: need a more general Commutation Rule for which[q ⋅ p,r−1]
is a special case 

0 

1st simplify: [f(r),q ⋅p] = q ⋅[f(r), p!] + [f(r), q!] ⋅p! 

4
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5.73 Lecture #21 21 - 5 
but, from 1-D, we could have shown 

∂ ! ∂[f (x),p]φ = f (x) ! φ− (f (x)φ)
i ∂x i ∂x 

cancel! = 
i [f (x)φ′ − f ′φ − f φ′] = i!f ′(x)φ 

[f (x),p] = i! ∂f for 1-D 
∂x 

Thus, in 3-D, the chain rule gives, for the vector commutator: 

⎡ ∂r ∂r ∂r ⎤[f (r),p 
! ] = i" î  ∂f + ĵ  ∂f + k̂ ∂f ⎢ ⎥⎣ ∂r ∂x ∂r ∂y ∂r ∂z ⎦ 

evaluate these first
∂r ∂ 1/2 −1/2 

= ⎡⎣x
2 + y2 + z2 ⎤⎦ = x ⎡⎣x

2 + y2 + z2 ⎤⎦ = x / r
∂x ∂x 

& ∂retc. for ∂r 
∂y ∂z 

!
∂f ⎡ î  x + ĵ  y + k̂ z ⎤ ∂f qThus [f (r),p 

! ] = i" 
∂r ⎣⎢ r r r ⎦⎥ 

= i" 
∂r r 

! ∂f ⎛ x2 + y2 + z2 ⎞ ∂f[f (r),q 
! 
⋅p] = q ⋅[f (r),p] = i" 

⎠⎟ 
= i" r

∂r ⎝⎜ r ∂r 

f (r),q ⋅p[ ] = i! ∂f 
∂r 

r this is a scalar, not a 
(4)vector, equation 

But we wanted to evaluate the commutation rule for f(r) = r–1 

−1 ∂ ⎛ 1⎞ −1 (5)⎡⎣r ,q ⋅p⎤⎦ = i! ⎠⎟ r = −i!r⎝⎜∂r r 
plug this result into (3) 

p = r−1q ⋅p − 
2
3 i!r−1 + 

2
1 (i!r−1 ) = r −1 (q ⋅ p − i!)r 

(6) 

This is the compact but non-symmetric result we got starting with 
a carefully symmetrized starting point – as required by 
Correspondence Principle. 

pr = r−1 q ⋅p − i!( )RESUME 
HERE 
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5.73 Lecture #21 21 - 6 
* This result is identical to the result obtained from standard vector 

analysis IN THE LIMIT OF ! → 0. 

Still must do 2 things: show that [r,pr] = i!" 
show that pr is Hermitian 

−1⎡⎣r,p ⎤⎦ = ⎡⎣r,r (q ⋅p − i!)⎤⎦r 0 0 
−1 −1 −1= r ⎡⎣r,q ⋅ p⎤⎦ − r ⎡⎣r,i!⎤⎦ + ⎡⎣r,r ⎤⎦(q ⋅ p − i!) 

= r−1 ⎡⎣r,q ⋅ p⎤⎦ Use Eq. (4) to get 

⎡⎣r,q ⋅ p⎤⎦ = i!r using the non-lecture result: ⎡⎣ f (r),q i p⎤⎦ = i! ∂
∂r 

f r 

* ∴⎡⎣r,pr ⎤⎦ = i! 
* we do not need to confirm that pr is Hermitian because it was constructed 

from a symmetrized form which is guaranteed to be Hermitian.  Why is 
this guaranteed? 

Correspondence Principle! 

2. Verify that the Classical Definition of Angular Momentum is Appropriate 
for QM. 

î ĵ k̂ 

q ×!
! 
L = 

!p = x y z (7) 

p p px y z 

We will see that this definition of an angular momentum is acceptable as far 
as the correspondence principle is concerned, but it is not sufficiently general. 

NONLECTURE 
!

What about symmetrizing L ? 

L = yp − zp = p y − p z PRODUCTS OF 
x z y z y 

NON-CONJUGATE! ! = −( p × q) QUANTITIES 
x 

∴ p × q = – L 

6
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5.73 Lecture #21 21 - 7 
q × p + p× q = 0 symmetrization is impossible! 

q × p − p × q = 2L
! 

antisymmetrization  is unnecessary! 
!

But is L Hermitian as defined? 
†BE CAREFUL: (q × p)† ≠ p × q†! 

go back to definition of vector cross product 

Lx = ypz − zpy 

† † † †Lx = pzy
† − pyz = pzy − pyz = ypz − zpy = Lx 

(derived using fact that p and q are Hermitian) 

! 
∴L is Hermitian as defined . 

RESUME 
This is a transformation 

3A. Separate p2 into radial and angular terms. definition using different 
operators2GOAL: p2 = pr + r−2L2 (8) 

! ! !vector analysis p = p|| + p⊥ (||  and ⊥ with respect to q!) 

!p 

p|| 

p⊥ 

parallel to q 
! 

! 
part of p 

! points along q 
!: p q 

" ! 

Classically p = r−2 q q( ⋅p) − q × (q × p)  (9)⎢ ! ! ⎥ ⊥to q,p plane 

⎡ 
! 

scalar projection on"q 
! 

L ⎤#$! !⎢ ⎥ 

⎣ component in q,p ⎦ 
component of p 

! !
plane which is ⊥ to q!|| to q (is the sign correct?) 

( ! ! )* Right Hand rule for q 
! 
× q × p gives component mostly opposite to p 

! , hence the minus sign 

* r−2 is needed in both terms to remain dimensionally correct 

7
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5.73 Lecture #21 21 - 8 
talk through this vector identity 

! ! ! !1st term (p ): q ⋅p = q p cosθ 
! 

|| 

= unit vector along q!q/ q 
!p p = unit vector along p! p! ! q2nd term (p⊥ 

): q × p points ⊥ up out of paper 

thumb finger palm 

thumb! 
q × q × p" is in plane of paper in opposite direction of p⊥,

finger hence minus sign. 

Is it necessary to symmetrize Eq. (9)? Find out below. 

NONLECTURE 

Examine Eq. (9) for QM consistency 

x component 

px = r−2 x xpx + ypy + zpz − yLz − zLy[ ( ) ( )] 
but yLz − zL y = y xpy − ypx + z xpz − zpx( ) ( ) 

= r−2 
0 0 

px [(x2 + y2 + z2)px + (xy − yx)py +(xz − zx)pz ] = px 

similarly for p y, pz 

Symmetrize?  No, because the 2 parts of p ! 

are already shown to be Hermitian. 

RESUME 

8
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5.73 Lecture #21 21 - 9 
3B. Evaluate p⋅p. Use Eq. (9) 

!p2 = p r –2[q q( ⋅ p) − q × (q × p)] (10) 

[goal is p2 = pr 
2 + r−2L2 ] 

!
commute p through r-2 to be able to take advantage of classical vector triple product 

NONLECTURE 

! −2 ⎡ ∂ ∂ ∂ −2 ⎤ ! " ⎡ ∂ ∂ ∂ ⎤⎡⎣p,r ⎤⎦ = −i" ⎢ î  r−2 + ĵ r−2 + k̂ r ⎥ using p = ⎢ î ĵ k̂ ⎥
⎣ ∂x ∂y ∂z ⎦ i ⎣ ∂x ∂y ∂z ⎦ 
−4 ! = 2i"r q 

⎡ ∂f ⎤Recall [f(x),p ] = i!x⎣⎢ ∂x ⎦⎥ 

∂ −2 −3 ∂r −3 ⎛ 1⎞ 2xbecause r = −2r = −2r = −2x r4 

⎝⎜ ⎠⎟∂x ∂x 2 r 
! −2 ! −2 − r−2 ! −4 ![p,r ] = pr p = 2i"r q 

! −2 −2 ! −4 !thus pr = r (p + 2i"r q) (11) 

now insert Equation (11) into Equation (10), we get 

p2 = r −2 (!p+ 2i"r−2!q)⎡⎣ !q ⋅(!q ⋅ !p) − !q× (!q× !p)⎤⎦ (12) 

multiply this out and get 4 terms. 

p2 = r−2(p ⋅q )(q ⋅ p) − r−2p ⋅[q × (q × p)] + r−2 (2i!)r−2(q ⋅ q)(q ⋅ p) − r−2 (2i!)r−2q ⋅[q × (q × p)] 
I II III IV 

rpr + i!" 
I = r−2 (q ⋅ p− 3i!)(q ⋅ p)⎫⎪

⎬r−2 (q ⋅p − i!)(q ⋅p) = r−1pr (q ⋅ p)
III = r−2 ( 2i!)(q ⋅ p) ⎪⎭ 

II = −r −2(p × q) ⋅(q × p) = −r −2( –L2 ) = r −2L2 

IV = −r4 (2i!)(q × q)0⋅(q × p) 
p2 = r −1pr (rpr + i!) + r−2L2 = r −1[rpr − i!]pr + r−1pri! + r −2L2 = pr 2 + r−2L2 

(13) 
rpr-[r,pr] 

We have achieved our goal. 

revised August 17, 2020 @ 8:14 AM 
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5.73 Lecture #21 21 - 10 
RESUME 

2This p2 = pr + r−2L2 equation 

is a very useful and simple form for p2 – separated into additive radial and 
angular terms! Whenever H can be separated into additive radial and angular 
terms, then the eigenvectors can be factored into radial and angular parts. 

SUMMARY 

p = r−1 (q ⋅ p − i!) radial momentum r 

p2 = p2 + r−2L2 separation of radial and angular terms r 

pr 
2 ⎡ L2 ⎤H = + ⎢ 2 +V (r)⎥ Separation of H into radial and angular terms2µ ⎣ 2µr ⎦ 

!2ℓ(ℓ +1) a sum of a “centrifugal” repulsive term and a
eventually Vℓ (r) = 

2µr2 +V (r) radial potential energy term 

⎯Next Lecture: properties of Li , L
2 ⎯→ Complete Set of Commuting Observables 

(CSCO) 

10
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