
 

   

 

    

  

 

 
 

 
 

 
 

   

   
      

5.73 Lecture #16 16 - 1 
Perturbation Theory III

Last time 
1 31. V (x) = kx2 + ax cubic anharmonic oscillator 
2 

algebra with x3  vs. operator algebra with a,a† 

ax3 ↔ωx and Y00 

can’t know sign of a from vibrational 
information alone. [Can know it if rotation-
vibration interaction is included.] 

2⎡1 − e−αx ⎤2. Morse Oscillator V (x) = De ⎣ ⎦⎢ ⎥ 
* D ,α ↔ ω,ωx,m e 

* 
d 3V 
dx3 

ω2α33! = 6a = − 
2 ωx 

= 
d 3V morse 

dx3 

x=0 

* 
α2!ωx = 2 3ω4m

direct from Morse vs. 
2!15 a

3ω44 m

from pert. theory on 
1 3kx2 + ax
2 

α2! ⎤∴ωx = 2 3ω4 ⎥samem ⎥ functional
15 a ⎥

from pert. theory on power series expansion of Morse potential (page #15-4) ωx = 3

2 

ω 

! 
4 ⎥ form 

4 m ⎦ 

Today: 1. Effect of cubic anharmonicity on transition probability 
orders of pert. theory, convergence [previous lecture: #15-6,7,8]. 

2. Use of harmonic oscillator basis sets in wavepacket calculations. 

3. What happens when H(0) has (near) degenerate E(n 
0) ’s? 

Diagonalize block which contains (near) degeneracies. 
“Perturbations” — accidental and systematic. 

4. 2 coupled non-identical harmonic oscillators: “polyads”. 

1
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5.73 Lecture #16 16 - 2 

One reason that the result from second-order perturbation theory applied 
directly to V(x) = kx2/2 + ax3 and the term-by-term comparison of the power 
series expansion of the Morse oscillator are not identical is that contributions to 
the (n + 1/2)2 term are neglected from higher derivatives of the Morse potential. 
In particular 

⎡ !ω2α4 ⎤ 4(1) 4E = V ′′′′( )0 x 4!= ⎢7 / 2 ⎥x 24
ωxn 

⎣ ⎦ 

⎛ ! ⎞ 
2 

4 ⎡ ⎤n x n = 4(n +1/ 2)2 
+ 2

⎝⎜ 2mω ⎠⎟ ⎣⎢ ⎦⎥ 

contributes in first-order of perturbation theory to the (n + 1/2)2 term in En. 

En 
(1) = 

12
7 ωx(n +1/ 2)2 + 

7 

24 
ωx 

Example 2  Compute some property other than Energy (repeat of 
pages 15-6, 7, 8) 

(0 ) (1)need ψ n = ψn + ψn 
2transition probability: for electric dipole transitions P ∝ xnn′n′←n 

For  H-O n → n ±1 only 
2 ⎛ ! ⎞ = ⎝⎜ ⎠⎟ (n +1)xnn+1 2mω 

for perturbed H-O H(1) = ax3 

(1) 
(0) + 

H nk (0) ψ n = ψ n Σ′ (0) − Ek
(0) ψ kk En 

(1) (1) (1) (1) 
(0) + 

H nn+3 (0) + 
H nn+1 (0) + + 

H nn−1 (0) + 
H nn−3 (0) ψ n = ψ n ψ n+3 ψ n+1 ψ n−1 ψ n−3−3!ω −!ω !ω 3!ω 

2
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5.73 Lecture #16 16 - 3 

initial 
(0) + ψ n 

(1) ψ n effect anharmonic (also contaminated via ax3) final 
state 3effect of ax of x state 

(0) ψn 

(0) on ψ n 
n+4 n+7, n+5, n+4, n+3, n+1 

n+3 
n+2 

n+5, n+3, n+2, n+1, n–3 

n+1 
n+1 

n+4, n+2, n+1, n, n–2 

n n 
n+3, n+1, n, n–1, n–3 

n–1 
n–1 n+2, n, n–1, n–2, n–4 

n–2 
n+1, n–1, n–2, n–3, n–5 

n–3 
n–4 

n–1, n–3, n–4, n–5, n–7 

⎤ 

Many paths from initial to final state, which interfere constructively and
2

destructively in x 
n¢ = n + 7, n+5, n+4,

nn′ 
n+3, n+2, n+1, n, n – 1, n – 2, n – 3, n – 4, n – 5, n – 7 

only paths for H-O! 

The transition strengths may be divided into 3 classes 

1. direct via x: n → n ± 1 
2. direct plus one anharmonic step   n → n + 4, n + 2, n, n – 2, n – 4 
3. direct plus 2 anharmonic steps    n → n + 7, n + 5, n + 3, n + 1, n – 1, n – 3, n – 5, 
n – 7 
Work thru the ∆n = –7 path 

1/2 
⎡3/2+3/2+1/2 a2⎡ ⎤h⎛ 

⎝⎜
⎞ 
⎠⎟

⎢
⎢ 

⎥
⎥

n x n + 7 (n +1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)(n + 7)!###"###$ !"$ !###"###$⎢
⎢⎣ 

⎥
⎥⎦ 

= 
)22mω (−3hω ⎣ ⎦xn ,n+3 xn+3,n+4 xn+4 ,n+7 

 

  

 
  

  
  

 

 

	

 

  

  

  
  

  

3x 
n,n+3 x 

n+3,n+43x 
n+4,n+7 

!3a4n72 ∝xnn+7 3427 m7ω11 
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5.73 Lecture #16 16 - 4 
* you show that the single-step anharmonic terms go as 

3/2+1/2 
⎛ ! ⎞ a 1/2 

∝ ⎡⎣(n +1)(n + 2)(n + 3)(n + 4)⎤⎦xnn+4 ⎝⎜ 2mω ⎠⎟ (−3!ω) 
!2a2n42 ∝xnn+4 3224 m4ω6 

* Direct term 

2 !1 
x ∝ 

1ω1 
(n +1)nn+1 

2m 

⎛ !n3a2 ⎞ 
each higher order term gets smaller by a factor 

⎠⎟ 
,

⎝⎜ 3223 m3ω5 
which is a very small dimensionless factor. 
RAPID CONVERGENCE OF PERTURBATION THEORY! 

What about the Quartic perturbing term bx4? 

Note that E (1) = n bx4 n ≠ 0 

and is directly sensitive to sign of b! 

We get scaling with respect to powers of a, n, �, and m. 
We get magnitudes. 
Sometimes we get signs. 

4

modified 8/13/20 1:11 PM 



 

  

   
   

 

 

   

  

   
 

   

    

    

5.73 Lecture #16 16 - 5 

2. What about wave-packet calculations? 

ψ n  expressed as superposition of ψ k
(0) terms 

Ψ(x,0)  expanded as superposition of ψ k
(0) terms (usually only 

one term, called the “bright state”).  But we must instead expand 
(0)  as a superposition of eigenbasis, ψ k , terms. ψ k

!Ψ(x,t )  oscillates at e − iEnt 

(0) + En 
(1) + En 

(2) En = En 

A time-evolving state, which is initially in a pure zero-order state, 
(0) ψ n ,  will dephase, then exhibit partial recurrences at 

m2π
any integer m2π ≈ ωt t = 

ω 
but * the rephasing is not perfect since, due to anharmonicity: 

En − Em ≠ !ω(n − m). 

These are not-quite-integer multiples of a common factor (!ω)! 

* time of 1st recurrence will 
depend on E ! 

because En+1 − 

2 
En−1  decreases as n increases. 

5
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5.73 Lecture #16 16 - 6 
(0 )Degenerate and Near Degenerate En 

* Ordinary nondegenerate perturbation theory treats H as if it can be 
“diagonalized” by simple algebra. 

(0)CTDL, pages 1104-1107 →  find linear combination of degenerateψ n for which* 
H(1) lifts degeneracy. 

* This problem is usually treated in an abstract way by people who have never 
actually used perturbation theory! 

Whenever Hnk
(1) 

En 
(0) − Ek

(0) ≈ 1 
must diagonalize the n,k 2 × 2 
block of H = H(0) + H(1) 

accidental degeneracy — “spectroscopic perturbations” 
systematic degeneracy — 2-D isotropic H-O, “polyads” 
quasi-degeneracy — special chunk of H 
effects of remote states — Van Vleck Perturbation Theory - next lecture 

Philosophy: 

En 

0 

Continuum 

particular class of experiment does not 
sample all En ’s - only samples over a given 
energy range and only at a given energy 
resolution! 

Want a model that replaces the ∞ dimension H by a simpler finite one 
that does really well for the class of states sampled by the particular 
experiment. 

NMR nuclear spins (hyperfine) don't care about excited vibrational 
or electronic states 

IR vibr. and rotation don't care about Zeeman splittings 
UV electronic don't care about Zeeman splittings 

6
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N ×N

5.73 Lecture #16 16 - 7 
quasidegenerate block
sampled by our 
specific experiment 

H = 

⎛ 

⎝

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜ 

⎞ 

⎠

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟⎟ 

quasidegenerate blocks 

N × N 

sampled by other 
experiments 

Each finite block along the diagonal of H is described by an Heffective “fit model”. 
We want these fit models to be as accurate and physically realistic as possible. 

* fold important out-of-block effects into N × N block → involves 2 
strips of H 

* diagonalize augmented N × N block - refine parameters that define 
the block against observed energy levels. 

next time review V-V 
transformation 

4. Best to illustrate with an example — 2 coupled harmonic oscillators: “Fermi 
Resonance” [approx. integer ratios between characteristic frequencies of 
vibrational subsystems] 

H = 
⎡ 
⎢
⎣ 

2p1 

2m1 

+ 
1 

2 
2k1 x1 

⎡⎤ 
⎥
⎦ 
+ ⎢
⎣ 

2p2 

2m2 

+ 
1 

2 
2k2 x2 

⎤ 
⎥
⎦ 

2+ k122x1 x2 why not k12x1x2? 

(0 ) (1) (0 )ψ n1n2 
= ψn1 

(x1)ψn2 
(x2 ) 

(0) (0)H1 H2 

E(0) = !ω1(n1 +1/ 2)n1 (0) 
(0) 

E = ! ⎡⎣ω1(n +1/ 2)+ ω2 (m +1/ 2)⎤⎦nm 
E = !ω2 (n2 +1/ 2)n2 

let ω1 = 2ω2 (m1 = m2, k1 = 4k2 ) 

There are systematic degeneracies. 
modified 8/13/20 1:11 PM 
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n +1( ) m+ 2( ) m+1( )[ ]1/2

n +1( ) m( ) m−1( )[ ]1/2

n+1( ) 2m+1( )2[ ]1/2

n( ) m+ 2( ) m+1( )[ ]1/2

n( ) m( ) m−1( )[ ]1/2

n( ) 2m+ 1( )2[ ]1/2

5.73 Lecture #16 16 - 8 
3/2 1/2 

H(1) 2 ⎛ ! ⎞ ⎛ 1 ⎞ † †2 + a2a2 = k122x1x2 = k122 ⎝⎜ 2m⎠⎟ ⎝⎜ω1ω2
2 ⎠⎟ 

⎡⎣(a1 + a1 )(a22 + a2
† + a†2a2 )⎤⎦ 

aa† + a†a = 2a†a +1 

H(1) = (constants) 

6 types 
of terms 

(1) Hnm;kℓ 

n – k m – ℓ H(1) 

2a1a2 –1 –2 [(n+1)(m+2)(m+1)]1/2 

†2a1a2 –1 +2 [(n+1)(m)(m–1)]1/2 

a1 2a2( †a2 + 1 ) –1 0 [(n+1)(2m+1)2]1/2 

2†a2a1 +1 –2 [(n)(m+2)(m+1)]1/2 

†2†a2a1 +1 +2 [(n)(m)(m–1)]1/2 

† 2a2a1( †a2 + 1 ) +1 0 [(n)(2m+1)2]1/2 

Recall ω1 = 2ω2 

Seems complicated – but all we need to do is look for systematic near 
degeneracies 

List of “Polyads” E(0)/!ω2 “Polyad Number” 
by Membership P = 2n1 + n2 

[2(n1 + 1/2) + (n2 + 1/2)] 

(n1, n2) degeneracy 

(0,0) 1 1+ 1/2 = 3/2 0 

(0,1) 1 1 + 3/2 = 5/2 1 

(1,0), (0,2) 2 3 + 1/2 = 7/2 2 

(1,2), (0,3) 2 3 + 3/2 = 9/2; 1 + 7/2 = 9/2 3 

(2,0), (1,2), (0,4) 3 11/2 4 

(2,1),(1,3),(0,5) 3 13/3 5 

? 4 15/2 6 

? 4 17/2 7 

etc. 19/2 8 

8
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5.73 Lecture #16 16 - 9 
General P block: 

(0) 3EP !ω2 = 
2 
+ (2n1 + n2 ) = P + 3 / 2 

# of terms in P block depends on whether P is even or odd 

P + 2 ⎛ P ⎞ ⎛ P ⎞states even P ⎝⎜ n1 = 
2 

,n2 = 0⎠⎟ ,⎝⎜ n1 = 
2 
−1,2⎠⎟ ,…(0,P )

2 
P +1 ⎛ P −1 ⎞states odd P n1 = ,n2 = 1⎠⎟ ,…(1,P )⎝⎜2 2 

not 0 because 
P = 2n1 + n2 is odd 

⎛ H(1) ⎞ †2 + a1 
†2 + a1

† 

⎝⎜ !3/2m−3/2ω1 
−1/2ω2 

−1k122 2
−3/2 ⎠⎟ 

= a1a2
†a2

2 + a1a2
2 + a1

†a2 (2a†2a2 +1) + a1 (2a†2a2 +1) 
∆P= 0 0 –4 +4 –2 +2 

inside polyad between polyad blocks 

⎛ P + 3 / 2 0 0 0 
0 

⎞ 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

(0) HP P + 3 / 2 0 0 
0 

POLYAD = 
0 0!ω2 " 
0 0 0 P + 3 / 2 

P 
2 − 2,4 

⎞
⎠ 

⎛
⎝ 

P P 
2 − 1,2 

⎜ 

,0 !0, Pn,m !
2⎛ ⎞ 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟ 

(even P) 

⎤ 
⎥⎦ 

1/2 P⎡0 ⎟ (2 •1) 0 0 0P ⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝ 

1, P − 2 

0 0 0 sym 0 

Note that all matrix elements may be written in terms of a general 
formula — computer decides memberships in each polyad and sets up 
the matrix. 

,0 ⎢⎣ 22 

⎤⎛
⎝ 

1/2 

⎜ 

0 sym 0 ! 0 

(1) HP P ⎞
⎠ 

P 

2 
−1⎟ (3• 4 

⎡0 ) 0 0= sym 2 − 1,2
stuff 

! 

⎢⎣ ⎥⎦ 

]1/2 0 0 sym 0 [(1)(P)(P −1) 0, P 

⎠ 

modified 8/13/20 1:11 PM 
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5.73 Lecture #16 16 - 10 

So now we have listed ALL of the connections of P = 6 to all other blocks! 
So we use these results to add some correction terms to the P = 6 block according to 
the formula suggested by Van Vleck. 

(1)Hkm (2) Hnk 
(1) 

=HPnm ∑ (0) + Em 
(0) 

P′ En (0) − Ek2 
for our example*, the denominator is !ω2 ⎡⎣P − P′⎤⎦ 

* For this particular example there are no cases where there are nonzero elements 
for n ≠ m (many other problems exist where there are nonzero n ≠ m terms) 

⎛ 3 4 8 5 

2 
− 
2 
− 
4 
= − 

⎞ 
30 ⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜ 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟ 

2 
50 75 4 36 

2 
− 
3 
+ 
4 
− 
4 

= −822(2) !ω2 H6 = 2!3 m−3ω1 
−1ω2 2−3−2 k122 

dimensionless 
81 162 12 60 105+ = −
2 
− 
2 4 

− 
414 2 

169 56 197− − = −06 2 4 2⎜⎝ ⎟⎠ 

Computers can easily set these things up. 
Could add additional perturbation terms such as diagonal anharmonicities that 
cause ω1 : ω2  resonance to detune from 2 : 1. 

10
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  P = 6, P′
P′ –6 ≡ ∆P = –2
P = 6 ~ P = 4

P′ = 8

–
P′ = 2

P′ = 10

5.73 Lecture #16 16 - 11 
For concreteness, look at P = 6 polyad, which includes the (n1, n2) states for 
2n1 + n2 = 6: (3,0), (2,2), (1,4), (0,6) 

(1) H6

stuff 

30 

22 

14 

06 

30 22 14 06 

)1/2 0 (3⋅2 ⋅1 0 0 

)1/2 sym 0 (2 ⋅ 4 ⋅ 3 0 

)1/2 0 sym 0 (1⋅5 ⋅6 

0 0 sym 0 

We need to identify what are all of the out-of-block elements of the x x2 term that 
1 2

affect the P = 6 block? 

P = 6,P ′ H(1)/stuff (0) − EP
(0) 
−2EP 

P = 6, ∆P = –2 a1 (2a†2a2 +1) 3,0 ~ 2,0 31/2 +2!ω2P’ = P–2 = 4 
2,2 ~ 1,2 21/2 · 5 +2!ω2 

1,4 ~ 0,4 11/2 · 9 +2!ω2 

0,6 ~ — — — 
∆P = +2 a1

† (2a†2a2 +1) 3,0 ~ 4,0 41/2 –2!ω2∆P =+2 
P’ = P+2 = 8 2,3 ~ 3,2 31/2 · 5 –2!ω2 

1,4 ~ 2,4 21/2 · 9 –2!ω2 

0,6 ~ 1,6 11/2 · 13 –2!ω2 

∆P = 4 a1a
2
2 3,0 ~ — — — ∆P =–4 

P’ = P–4 = 2 2,2 ~ 1,0 21/2(2 · 1)1/2 +4!ω2 

1,4 ~ 0,2 11/2(4 · 3)1/2 +4!ω2 

0,6 ~ — — — 
†2 ∆P = +4 a1

†a2 
3,0 ~ 4,2 [4·2·1]1/2 –4!ω2∆P = +4 

P’ = P+4 = 10 2,2 ~ 3,4 [3·4·3]1/2 –4!ω2 

1,4 ~ 2,6 [2·6·5]1/2 –4!ω2 

0,6 ~ 1,8 [1·8·7]1/2 –4!ω2 

Within P = 6 block elements of H(1) 
P′ ≠ P = 6: out-of-P = 6 block 
interactions folded into the 

eff (0 ) (1) (2) P = 6 block on-diagonalHP=6 = H6 + H6 + H6 

!ω2 (6 + 3 / 2) 
⎛ 0 0 0⎞ ⎛ 0 0 0⎞ 
⎜ 0 0⎟ ⎜0 0 0⎟ 
⎜⎜ 0 0 ⎟⎟ ⎜⎜0 0 0⎟⎟⎝ 0 0 0⎠ ⎝ 0 0 0 ⎠ 
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