
 
 

   

   

 

 

 
    	    	

	
   	    	

	 	 	 	
   	

	 	 	 	
	

5.73 Lecture #14 14 - 1 
Perturbation Theory I 

(See CTDL 1095-1107, 1110-1119) 

Last time: derivation of all matrix elements for Harmonic-Oscillator: x, p, H 

“selection rules” xij 
n i − j ≤ n in steps of 2 (e.g. x3 : Δn = ±3,±1) 
n ∝ in/2 

“quantum number scaling” xii 

1/2 

dimensionless ⎛ mω⎞x~ = x⎝⎜ ⎠⎟quantities ! 

)−1/2 p = (!mω p
~ 

1H = H~ !ω 

= 2–1/2 x (a + a† )
~ 

p = 2–1/2 i(a† − a) 
~ 

“annihilation” a = 2−1.2 (x + ip)
! 

1/2 a n = n n −1 
“creation” † = 2−1/2 (x – ip)a † = (n +1)1/2 a n n +1 
“number” a†a (not aa†) †a a n = n n 
“commutator” [a,a†] =	 +1 
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5.73 Lecture #14 column 14 - 2 
0 1 2 3 

⎛ 0 1 0 0 0 
0 0 2 0 0 
0 0 0 3 0 
0 0 0 0 ! 
0 0 0 0 0 

⎞ 
0 
1 

⎜
⎜ 
⎜ 
⎜
⎜ 
⎜
⎜⎝ 

⎟
⎟ 
⎟ 
⎟
⎟ 
⎟
⎟⎠ 

a little more: 

a01 = 11/ 2 
2 
3 

a = row 
(one step to right 
of main diagonal) 

⎛ ⎞(n!)1/2 0 ! 0 0 0
⎜ 
⎜
⎜ 
⎜ 
⎜
⎜ 
⎜ 
⎜
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟ 
⎟ 
⎟
⎟ 
⎟
⎟ 
⎟
⎟⎠ 

1/2 

0 0 !
⎛ 
⎝⎜ 
(n +1)! 

1! 
⎞ 0 1 

q 

⎠⎟convenience of having 
(n steps 
to right)

only one and not two an ! ! ! ! != diagonals filled 

1/2 

0 ! ! !
⎛ 
⎝⎜ 
(n + q)! 
q! 

⎞ 
⎠⎟ 

nselection rule for a ij j - i = n 

selection rule for a ij 
†n j - i = −n 

operate on right with an first 

[n!]−1/2 a†n = ( )n 
0 operate on left with (a†)m second 

⎡ (k!) ( j!) ⎤
1/2 

⎡(a† )m ( )a n ⎤ = δ j ,k−n+m ⎢ ⎥⎣ ⎦ jk !"# ⎣(k − n)! ( j − m)!⎦selection rule 

Selection rules are obtained simply by counting the numbers of 
a† and a operators and taking the difference. 

The actual value of the matrix element depends on the order in which the 
individual a† and a factors are arranged, but the selection rule does not. 

Lots of nice tricks and shortcuts using a, a†, and a†a 

This makes writing computer programs trivially easy and transparent. 
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5.73 Lecture #14 14 - 3 

One of the places where these tricks come in handy is perturbation theory. 

We already have: 1. WKB: local solution, local k(x), locate and exploit 
stationary phase (Lecture #3) 

2. Numerov–Cooley: exact solution - no restrictions 
(Lecture #9) 

3. Discrete Variable Representation: exact solution, 
Why perturbation theory? ψ as linear combination of H-O eigenstates 

(Lecture #11) 

• replace exact H, which is usually of ∞ dimension, by Heff, which is of finite 
dimension. Truncate infinite matrix so that any eigenvalue and eigenfunction can 
be computed with error < some preset tolerance. 
“Fit model” that is physical (because it makes localization and coupling 
mechanisms explicit) yet parametrically parsimonious 

• derive explicit functional relationship between an n-dependent observable (e.g. En) 
and n 

E ne.g. 
hc 

= ω (n+1/2)−ω x (n+1/2)2 
+ω y (n+1/2)3 

e e e e e 

• establish relationship between a molecular constant (ωe, ωexe, …) and the
3parameters that define V(x) e.g. ω"exe ↔& ax 

There are 2 kinds of garden variety perturbation theory: 

1. Nondegenerate (Rayleigh-Schrödinger) P.T. → simple formulas. 
This breaks down when the interacting basis states are “near degenerate.” 

2. Quasi-Degenerate P.T. → matrix Heff 

Finite Heff is corrected for “out-of-block” perturbers by “van Vleck” or 
“contact” transformation 

~4 Lectures 

Derive Perturbation Theory Formulas * correct En and ψn directly for effects of 
“neglected” terms in exact H 

* correct all other observables indirectly 
through corrected ψ 
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5.73 Lecture #14 14 - 4 
Perturbation Theory I. Begin Cubic Anharmonic Perturbation 

Formal treatment 

(0) + λE (1) + λE (2) E = λ0 E usually stops at λ2 
n n n n 

(0) + λ1ψ (1) ψ = λ0ψ usually stops at λ1(because all observables n n n 

involve ψ × ψ′, hence orders go up to λ2 ). 

H = λ0H(0) + λ1H(1) order sorting is MURKY 

λ is an order-sorting parameter with no physical significance. Set λ = 1 after all 
is done. λ = 0 → 1 is like turning on the effect of H(1). Equations must be valid for 
the entire range of λ. 0 ≤ λ ≤ 1. 

Plug 3 equations into Schrödinger Equation, Hψn = Enψn, and collect terms into 
separate equations according to the order of λ. 

λ0terms: 

H(0) (0) (0) (0) ψ n = En ψ n 

left multiply by ψ m 
(0) 

(0) (0)δmn Hmn = En 

(0) requires that H(0) be diagonal in {ψ }n 

(0) (0) } of H(0) CALLED BASISknow the eigenvalues{E n } and eigenfunctions{ψ n FUNCTIONS 

CALLED “ZERO–ORDER” MODEL 
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5.73 Lecture #14 14 - 5 
So we choose H(0) to be the part of H for which: 

* it is easy to write and exploit a complete set of 
eigenfunctions and eigenvalues 

* it is easy to evaluate matrix elements of commonly 
occurring “perturbation” terms in this basis set 

easier to think “nature”* sometimes the choice of basis set is based on convenience 
intended a simplerrather than “goodness” — doesn’t matter as long as the 
realitybasis set is complete. 

examples: Harmonic Oscillator V (x) = 
1 kx2 

2 

V (x) = D 1− e −ax ]2Morse Oscillator [ [D, a, and Re ] 
V(x) = bx4

Quartic Oscillator 
0n-fold hindered rotor Vn (φ) = (Vn 2)(1− cosnφ) 

Now return to the Schrödinger Equation and examine the �1 and �2 terms. 

λ1 terms 

H(1) (0) + H(0) (1) (1) (0) (0) (1) = En + Enψ n ψ n ψ n ψ n 

(0) multiply by ψ n 

from H(0) operating to left 

(1) +En
(0 ) (0 ) (1) (1) +En

(0 ) (0 ) (1) =Enψn ψn ψn ψnHnn 

same 
get rid of them 

(0) (1) (could also require = 0)ψ n ψ n 

we do require this later 
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5.73 Lecture #14 14 - 6 

Hnn = En
(1) (1) 1st-order correction to E is just the expectation

value of the perturbation term in H: H(1). 

Return to λ1 equation and this time multiply by ψ(0)
m 

(1) + Em 
(0) (0) (1) = 0 + En

(0) (0) (1) ψm ψ n ψm ψ nHmn

(1) = (0) (1) (0) − Em
(0) (En )ψm ψ nHmn

(1)
(0) (1) = 

Hmnψm ψ n (0) − Em 
(0)En

(1) ψ (0) (0) (0) Now, to get ψ , we use the completeness of { } : ∑ ψ k ψ k 
k 

n 

(1) (0) (0) (1) ψ n = ∑ ψψ k ψ k n 
k 

but we already know this 

* index of ψ (1) matches 1st index of E (0) in denominatorn n 

* n = k is problematic. Insist on Σ′ k which means
exclude the k = n term

(0) (1) * we cold have demanded ψ ψ = 0n n 

(1)* counter - intuitive order of indices Hkn 

indices in opposite order 
from naïve expectation 
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5.73 Lecture #14 14 - 7 
�2 terms 

most important in real problems although mindlessly excluded from most 
textbooks. 

H(1) (1) (1) (1) (2) (0) = En + Enψ n ψ n ψ n 

(0) (0) (1) multiply by = 0ψ n ψ n ψ n 

(0) H(1) (1) = 0 + En 
(2) ψ n ψ n 

↑& 
completeness 

(0) H(1) ψ k ψ k
(0) (0) (1) (2) ψ n = En∑ ψ n 

k 

(1) H(1) 
n,kH n,k ∑′ (0) − Ek 

(0) k E n 

En 
(2) = ′Σ

k 

Hk ,n 
(1) 2 

En 
(0) − Ek

(0) 

↑& 
always first 

“matrix element squared” 
over 

energy difference in “energy 
denominator” 

(0) (1) (2) ;ψ (0) (1) !We have derived all needed formulas E , E , E ,ψ n n n n n 

V(x)Examples 

V (x) = 
1 kx2 + ax3 (a < 0)
2 

H(0) 1 2 + 
p2 

x= kx
2 2m (actually the ax3 term with a < 0 makes 

H(1) 3= ax all potentials unbound. How can we 
pretend that this catastrophe does not 
affect the results from perturbation 
theory?) 
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5.73 Lecture #14 14 - 8 
We need matrix elements of x3 

Two ways to get them: 

* matrix multiplication xi 
3 
ℓ = ∑ xij x jk xkℓ 

j ,k 

* a,a† tricks 
3/2 3/2 

x3 ⎛ ! ⎞ 3 ⎛ ! ⎞ 2−1/2 
3 

= x~ 
= ⎡⎣ (a + a† )⎤⎦⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟mω mω 

3/2 
⎛ ! ⎞ )+ a†3 = 
2mω 

⎡⎣a
3 + (a†aa + aa†a + aaa† )+ (aa†a† + a†aa† + a†a†a ⎤⎦⎝⎜ ⎠⎟ 

Each group in ( ) has its own ∆v selection rule (see lecture #13 notes). 
Simplify using [a,a†] = 1. 

Goal is to manipulate each mixed a,a 
† term so that “the number 

operator”, a†a, appears at the far right and then exploit a†a n = n n 

All of the nonzero elements: 
∆ n = ±3 square root 

3 1/2 of larger q.n.
a n−3n = ⎡⎣n(n −1)(n − 2)⎤⎦ 

†3 a = ⎡⎣(n + 3)(n + 2)(n +1)⎤⎦ 
1/2 

n+3n 

† † † †∆n = –1: (a aa + aa a + aaa ) = 3aa a –1 

† † † †because a aa = aa a + ⎡⎣a ,a⎤⎦a = aa a − a 
† † † †aaa = aa a + a ⎡⎣a,a ⎤⎦ = aa a + a 

† 3/2 aa a = n +1( )
n−1n 
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5.73 Lecture #14 14 - 9 

† † † † † † † 

)
∆n = +1: (aa a† + a aa† + a a a) = 3a a a + 3a 

1/2 )1/2 )3/2 † † † ⎤⎦n+1n 
⎡⎣3a a a + 3a = 3n(n +1 + 3(n +1 = 3(n +1 

n (n + 1)1/2 
(This is neither typo 
nor approximation.) 

So we have worked out all x3 matrix elements — leave the rest to P.S. #5. 

(0) (1)
Properties other than En? Use ψn = ψn + ψ n 

e.g. transition probability (electric dipole allowed vibrational transitions) 

2Pnn′ ∝ xnn′ 
for H-O 

2 ⎛ ! ⎞ (n> here means the larger of n> and n<)=xnn′ ⎝⎜ 2(km)1/2 ⎟ n>δn> ,n<+1⎠ 
mω& 

(selection rule: only ∆n = ±1 transitions). 

For a perturbed H–O, e.g. H(1) = ax3 

(1) 
(0) (0) =ψ n ψ n ψ k+ Σ′ (0) 

H 

− 
kn 

Ek
(0) k En 

(1) (1) (1) (1) 
(0) (0) (0) (0) (0) Hnn+3 + 

Hnn+1 + 
Hnn−1 Hnn−3=ψ n ψ n ψ n+3 ψ n+1 ψ n−1 ψ n−3+ 

−3!ω −!ω +!ω 
+
+3!ω 

Note the pairwise simplicity in the denominators. 
(1) The H nn′ terms are matrix elements of x3. 
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5.73 Lecture #14 14 - 10 
Allowed 

1st index 2nd indices 
(initial state) (final state) 

⎛ ⎞n + 4,n + 2 
n + 2,n 

n +1,n −1 
n,n − 2 

⎛ ⎞n + 3 ⎜
⎜
⎜
⎜
⎜
⎜ 

⎟
⎟
⎟
⎟
⎟
⎟ 

1st index reflects anharmonic mixing of initial 
state due to ax3 term 

2nd indices refer to final state reached via 
electric dipole allowed transition, controlled 
by matrix elements of x. 

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 

n +1 
n 

n −1 
n − 3 

x 

n − 2,n − 4⎝ ⎠ 

Cubic anharmonicity of V(x) can give rise to ∆n = ±7, ±5, ±4, ±3, ±2, ±1, 0 transitions. 

⎛ ! ⎞ 
7/2 

a2 ⎡(n + 7)!⎤1/2 

n x n + 7 = ⎢ ⎥
⎝⎜ 2ωm⎠⎟ ( )2 

⎣ n! ⎥−3!ω ⎢ ⎦ 
≈ n7/2

4
2 a 

x ≈ n7 
nn+7 7ω11m 

1Other less extreme ∆n transition strengths are given by smaller powers of and n.
ω 
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