5.73 Lecture #14

14 - 1

Perturbation Theory I
(See CTDL 1095-1107, 1110-1119)

Last time: derivation of all matrix elements for Harmonic-Oscillator: x, p, H

“selection rules”

“ .
quantum number scaling

n
/)
» X; o l-n/2

x” |i—j| <7 in steps of 2 (e.g. x’:An= i3,i1)

dimensionless X =
quantities )
I~) =
H=—H
x=2"(a+a')
p=2
“annihilation” a=2"12 ()5 + ip) a‘ n> =n"? | n— 1>
“creation” a’ =2"%(x—ip) aT|n> = (n+1)”2‘n+l>
“number” afa (not aaf) aTa| n> - n| n>
“commutator” [a,af] =+1
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O 1 2 3
01 0 o 0
) 00 V2 0 1
a little more:
a=| 0 0 0 3 0 |2 row
12 . (one step to right
agr =1 0 0 0 0 ) 3 of main diagonal)
0O O 0 0 O
0 (n1)" 0 0 0
1/2
+1)!

0 0 (n+1) 0 1
convenience of having 1!
only one and not two 0 (n steps
diagonals filled a frd “ee “ee Y Y e tO I‘lght)

0 (n + q)! " q

q!
selection rule for aj; j-i=n
selection rule for ajj” j-i=-n
operate on right with a™first
|n)=[n!]" (a*)n|0> \L operate on left with (af)™ second

jk (]—m)

[(aT)m(a)"] :M[(k(fg), (\Jl-',) ,r

selection rule

Selection rules are obtained simply by counting the numbers of
a’ and a operators and taking the difference.

The actual value of the matrix element depends on the order in which the
individual a and a factors are arranged, but the selection rule does not.

Lots of nice tricks and shortcuts using a, af, and afa

This makes writing computer programs trivially easy and transparent.
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One of the places where these tricks come in handy is perturbation theory.

We already have: 1. WKB: local solution, local k(x), locate and exploit
stationary phase (Lecture #3)
2. Numerov—Cooley: exact solution - no restrictions
(Lecture #9)
3. Discrete Variable Representation: exact solution,
Why perturbation theory? V¥ as linear combination of H-O eigenstates
(Lecture #11)

* replace exact H, which is usually of oo dimension, by Heff, which is of finite
dimension. Truncate infinite matrix so that any eigenvalue and eigenfunction can
be computed with error < some preset tolerance.

“Fit model” that is physical (because it makes localization and coupling
mechanisms explicit) yet parametrically parsimonious

* derive explicit functional relationship between an n-dependent observable (e.g. E,)
and n

e.g. %:we(n+1/2)—a)exe(n+1/2)2+a)eye(n+1/2)3

* establish relationship between a molecular constant (®,, ® %, ...) and the
parameters that define V(x) e.g. x

A

There are 2 kinds of garden variety perturbation theory:

1. Nondegenerate (Rayleigh-Schrédinger) P.T. — simple formulas.
This breaks down when the interacting basis states are “near degenerate.”

2. Quasi-Degenerate P.T. —» matrix Heff
Finite Heffis corrected for “out-of-block” perturbers by “van Vleck” or
“contact” transformation

~4 Lectures

Derive Perturbation Theory Formulas * correct E, and vy, directly for effects of
“neglected” terms in exact H

correct all other observables indirectly
through corrected y
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Perturbation Theory I. Begin Cubic Anharmonic Perturbation

Formal treatment
E = KOEEIO) + KE’ED + KEiz) usually stops at A.>

VY = Kolllio) + 7\.1\|I(1) usually stops at A'(because all observables

n

involve y x ’, hence orders go up to A*).
H=\"H" + A'"H" order sorting is MURKY

A is an order-sorting parameter with no physical significance. Set A =1 after all
is done. A =0 — 1is like turning on the effect of HY. Equations must be valid for
the entire range of L. 0< A <1.

Plug 3 equations into Schrodinger Equation, Hy, = E v, and collect terms into
separate equations according to the order of A .

A terms:

HO ‘V/(O)> — O
left multiply by <t//

V)

(0)

m

0) _ (0
Hmn - En 6mn

requires that HO be diagonal in {y*}

n

CALLED BASIS

know the eigenvalues{E © } and eigenﬁmctions{\pno)} of H” FUNCTIONS

CALLED “ZERO-ORDER” MODEL
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So we choose HO to be the part of H for which:

* 1t is easy to write and exploit a complete set of
eigenfunctions and eigenvalues

* 1t 1s easy to evaluate matrix elements of commonly
occurring “perturbation” terms in this basis set

* sometimes the choice of basis set is based on convenience
rather than “goodness” — doesn’ t matter as long as the

14 -5

easier to think “nature”
intended a simpler

basis set 1s complete. { reality
examples: Harmonic Oscillator V(x)=— kxc?
Morse Oscillator V(x)= D[l —e ™ ]2 [D, a, and Re]
_ .4
Quartic Oscillator Vx) = bx
n-fold hindered rotor V(¢)= ( v’ / 2)(1 —cosng)

Now return to the Schrodinger Equation and examine the A! and A2 terms.

A terms

H“)|\|I(O)>+H(O)|llf('>> - O

n n

v ED

v.)

multiply by <\|I ©

from H© operating to left

0 0 D )
| | | I

L — 1
same

get rid of them

)=o)

we do require this later

(could also require <\|Iff))
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H(l) _ E(l) 1st-order correction to K is just the expectation
nn  ~n  value of the perturbation term in H: H®,

Return to A! equation and this time multiply by <1p}(7(1))‘

H2;+E,§10)< (O)‘\If(l)> 0+E<0><W(0)w<1)>

Hr(rz < (0)‘\|I(”>(E,io)—E,ﬁ1o))
(1)

H
< (0)‘\If(1)> W%

Now, to get ‘W(l)> we use the completeness of {w(o’} 2‘ (°)><\|;§€°)‘

(1) _ 2‘ <0>>< (0)‘\If(l)>

but we already know this

* index of \pfj) matches 1% index of E}io) in denominator

go * n = kis problematic. Insist on X} which means
(1> 2’ <0>> knb exclude the k= n term
E(O)

(0)
E, * we cold have demanded <\|I;0)|I|I;1)> =0

* counter - intuitive order of indices HE;)

indices in opposite order
from naive expectation
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A2 terms

most important in real problems although mindlessly excluded from most

textbooks. H(l)‘\lf(l)> E(1)|W(l)> <<>)>

multiply by (y” (wi'lw.")=0
< (1)‘W(1)> 0+E®
T
completeness
(0) M f,,,0) (0) M\ _ ()
2w ) )= E,
k I
| |
H(l) z/ H(nl,?(
mk Y EO _ gO
n k
2
H
E(2) Zl k.,n “matrix element squared”
n 0) 0) L over
k E Ek energy difference in “energy
denominator”
always first
We have derived all needed formulas E*,E", E®;y'® w1
A
Examples Ve
Vix)= kx2 +ax® (a < O)
o=l P g
2 2m (actually the ax® term with a < 0 makes
H" = ax’ all potentials unbound. How can we

pretend that this catastrophe does not
affect the results from perturbation

theory?)
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We need matrix elements of x3

Two ways to get them:

. . e -
matrix multiplication  x} = x,x,x,,
j.k

* a,af tricks
PN n Y2 ;
O = (m_w) ’53 _ (%) |:2 12 (a n aT)]

3/2

h

— (2— [a3 + (aTaa +aa'a+ aaaT) + (aaTaT +a'aa’ + aTaTa) + a”}
ma

Each group in () has its own Av selection rule (see lecture #13 notes).
Simplify using [a,a’] = 1.
Goal is to manipulate each mixed a,aJr term so that “the number

operator”, ata, appears at the far right and then exploit a"'a| n> = n| n>

All of the nonzero elements:
An=23 square root

o - [n(n— 1)(11—2)]1/2 of larger q.n.

n=3n

af:én = [(n+3)(n+2)(n+ 1)]1/2

An =-1: (aTaa+aa*a+aaaT):3aaTa

A

aa=aa’a+[a’a]a=aa

aaa’ =aa'a+a[a,a’|=aa’a+a

(aa*a) 1 =n"?
n—in

i i

because a a—a
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An = +1: (aa a'+a'aa’+a’a )=321T21Ta+3aT

[3a'a'a+3a"]  =3n(n+1)" +3(n+1)" =3(n+1)"

l—}(n + 1)12

(This 1s neither typo
nor approximation.)

So we have worked out all x? matrix elements — leave the rest to P.S. #5.

Properties other than E,? Use y, = 1/’510) + ‘//511)

e.g. transition probability (electric dipole allowed vibrational transitions)

2

P

nn’

for H-O

o< (X

nn’

(n, here means the larger of n, and n,)

nn’

s

(selection rule only An = +1 transitions).

For a perturbed H-0, e.g. H® = ax3

()

H,
|wn>=\wz°>>+%'wlw”)>

H(l) H(l) H(l) H(l)
_ (0) nn+3 (0) nn+1 0) nn—1 0) nn—3 (0)

Note the pairwise simplicity in the denominators.

The H), terms are matrix elements of x3.
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Allowed
1st index 2nd indices
(initial state)  (final state)
n+3 n+4,n+2 . . L
15t index reflects anharmonic mixing of initial
n+1 n+2,n state due to ax3 term

2nd indices refer to final state reached via
electric dipole allowed transition, controlled
n,n—2 by matrix elements of x.

n—1
n—3 n—-2,n—4

n x| n+ln-1

Cubic anharmonicity of V(x) can give rise to An = +7, +5, +4, £3, £2, £1, 0 transitions.

<nyx|n+7>:( i )( & [(n+7)

1/2

20m _ )2 n!
3ho
~ 72
4
2 a ;
a7l T m70)11 h

Other less extreme An transition strengths are given by smaller powers of — and n.
®
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