LECTURE 30

1. Trichloromethane and chlorine gas react according to the following equation:

$$CHCl_3(g) + Cl_2(g) \rightarrow CCl_4(g) + HCl(g)$$

Tripling the concentration of Cl_2 increases the rate by a factor of 1.7 (the square root of 3) and tripling the concentration of $CHCl_3$ increases the rate by a factor of 3.

- (a) Determine the rate law for the reaction.
- (b) If [CHCl₃] is increased by a factor of 5 and [Cl₂] is increased by a factor of 4, estimate the change of rate observed.
- (a) rate = $k[CHCl_3][Cl_2]^{1/2}$
- (b) The rate increases by a factor of 10
- **2.** For the reaction $A + B + C \rightarrow \text{products}$, the following data were collected:

$\label{eq:local_local_local} Initial concentration \\ (mmol {\boldsymbol \cdot} L^{\text{-}1})$

$[\mathbf{A}]_0$	$[\mathbf{B}]_0$	[C] ₀	Initial rate (mmol·L ⁻¹ ·s ⁻¹)
2.06	3.05	4.00	3.7
0.87	3.05	4.00	0.66
0.50	0.50	0.50	0.013
1.00	0.50	1.00	0.072
	2.06 0.87 0.50	2.06 3.05 0.87 3.05 0.50 0.50	2.06 3.05 4.00 0.87 3.05 4.00 0.50 0.50 0.50

The initial rate given in the table above is for the rate of loss of A.

- (a) Write the rate law for the reaction.
- **(b)** Determine the overall order of the reaction.
- (c) Determine the value of the rate constant. Hint: convert mmol to mol first.
- (a) rate = $k[A]^2[B][C]^{1/2}$
- **(b)** 3.5
- (c) $4.5 \times 10^6 \text{ mol}^{-2.5} \text{ L}^{2.5} \text{ s}^{-1}$

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.