Which structure do you predict the amino acid lysine to have at pH 7.4?

- 1. Structure A
- 2. Structure B
- 3. Structure C
- 4. Structure D
- 5. Structure E

Structure C

Structure D

Structure E

Which structure do you predict the amino acid lysine to have at pH 7.4?

What is the oxidation number of nitrogen in N₂O?

- 1. -2
- 2. -1
- 3. 0
- 4. +1
- 5. +2

.

What is the oxidation number of nitrogen in N₂O?

For the half reaction:

$$Cr_2O_7^{2-} \rightarrow Cr^{3+}$$
 $Cr is...$

- 1. Reduced (it loses electrons)
- 2. Reduced (it gains electrons)
- 3. Oxidized (it loses electrons)
- 4. Oxidized (it gains electrons)

For the half reaction:

$$Cr_2O_7^{2-} \rightarrow Cr^{3+}$$
 $Cr is...$

1. Reduced (it loses electrons)

78% 2. Reduced (it gains electrons)

3. Oxidized (it loses electrons)

²% 4. Oxidized (it gains electrons)

Another cell has utilizes the following redox reactions:

$$Zn (s) \rightarrow Zn^{2+} (ag) + 2e^{-}$$

 $Sn^{4+} (ag) + 2e^{-} \rightarrow Sn^{2+} (ag)$

which of the following is likely to be true?

- 1. anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (reduction) cathode: $Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$ (oxidation)
- 2. anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (oxidation) cathode: $Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$ (reduction)
- 3. anode: $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$ (oxidation) cathode: $\operatorname{Zn}(s) \rightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-}$ (reduction)
- 4. anode: $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^- \to \operatorname{Sn}^{2+}(\operatorname{aq})$ (reduction) cathode: $\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^-$ (oxidation)

7

Another cell has utilizes the following redox reactions:

$$Zn (s) \rightarrow Zn^{2+} (ag) + 2e^{-}$$

 $Sn^{4+} (ag) + 2e^{-} \rightarrow Sn^{2+} (ag)$

which of the following is likely to be true?

- 1. anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (reduction) cathode: $Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$ (oxidation)
- 2. anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ (oxidation) cathode: $Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$ (reduction)

3. anode: $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$ (oxidation) cathode: $\operatorname{Zn}(s) \rightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-}$ (reduction)

4. anode: $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$ (reduction) cathode: $\operatorname{Zn}(s) \rightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-}$ (oxidation)

Predict the correct expression for the electrochemical cell:

Anode: Zn (s)
$$\rightarrow$$
 Zn²⁺ (aq) + 2e⁻

Cathode: $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$

- 1. $Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq) | Sn^{2+}(s)$
- 2. $Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq) | Sn^{2+}(aq)$
- 3. $Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq), Sn^{2+}(aq)$
- 4. $Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq) | Sn^{2+}(aq)$
- 5. $Zn(s) || Zn^{2+}(aq) || Sn^{4+}(aq) || Sn^{2+}(aq)$

Predict the correct expression for the electrochemical cell:

Anode: Zn (s)
$$\rightarrow$$
 Zn²⁺ (aq) + 2e⁻

Cathode: $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$

19% 1.
$$Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq) | Sn^{2+}(s)$$

41% 2.
$$Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq) | Sn^{2+}(aq)$$

35% (3)
$$Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq), Sn^{2+}(aq)$$

4.
$$Zn(s) | Zn^{2+}(aq) | Sn^{4+}(aq) | Sn^{2+}(aq)$$

5.
$$Zn(s) || Zn^{2+}(aq) || Sn^{4+}(aq) || Sn^{2+}(aq)$$

What must be happening when Pt (s) $|H_2(g)|H^+$ (aq) acts as an anode?

- 1. Pt (s) is oxidized
- 2. $H_2(g)$ is oxidized
- 3. H^+ (aq) is oxidized
- 4. Pt (s) is reduced
- 5. $H_2(g)$ is reduced
- 6. H⁺ (aq) is reduced

What must be happening when Pt (s) $| H_2(g) | H^+(aq)$ acts as an anode?

17%	1. Pt (s) is oxidized	
17%	2. H ₂ (g) is oxidized	
17%	3. H ⁺ (aq) is oxidized	
17%	4. Pt (s) is reduced	
17%	5. H ₂ (g) is reduced	
17%	6. H ⁺ (aq) is reduced	

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.