5.111 Lecture Summary #16

Readings for today: Section 8.1 (Section 7.1 in 4th ed) – Spontaneous Change, Sections 8.2 and 8.8 (Sections 7.2 and 7.8 in 4th ed) - Entropy, Sections 8.12, 8.13, 8.15 (Sections 7.12, 7.13, 7.15 in 4th ed) – Free Energy.

Reading for Lecture #17: Section 8.16 (Section 7.16 in 4th ed) – Free-Energy Changes in Biological Systems.

Topics:	Thermodynamics
-	I. Spontaneous change and free energy
	II. Entropy
	III. Free energy of formation

I. SPONTANEOUS CHANGE AND FREE ENERGY

A **spontaneous change** is a process that, given enough time, occurs without the need for outside intervention.

For example, the following reactions are spontaneous at constant pressure:

Under constant pressure and temperature, a process is spontaneous when $\Delta G < 0$, not necessarily when $\Delta H < 0$.

Figuring this out was one of the towering achievements of thermodynamics!!

 ΔG° is negative, even though ΔH° is positive. The reaction is **spontaneous**.

Now consider glucose oxidation at room temperature:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

$$\Delta H^\circ = -2,816 \text{ kJ/mol}, \quad \Delta S^\circ = +233 \text{ J/K} \bullet \text{mol}$$

 $\Delta G^{\circ} = -2,816 \text{ kJ/mol} - 298 \text{ K}(\underline{\qquad}) = -2,885 \text{ kJ/mol}$

 ΔG° more negative than ΔH° . This reaction is spontaneous at ______ temperatures.

II. ENTROPY

Entropy, S, is a measure of the ______ of a system . ΔS = change in entropy. ΔS is a state function.

 ΔS° positive \Rightarrow ______ in disorder

 ΔS° negative \Rightarrow ______ in disorder

Disorder of gas _____liquid _____solid In solids, molecules cannot move around freely.

Internal degrees of freedom and internal motions – e.g. vibrations- also contribute to entropy

Without calculations, we can predict the sign of ΔS for many reactions. For example,

 $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$ is predicted to have a _______ ΔS .

Demo: Let's "watch" entropy increase as liquid turns to gas. We will mix $H_2O_2(l)$ with food color and soap (to help us "watch" $O_2(g)$ bubble), and use yeast diluted in water to speed up the reaction.

Entropy for reactions, ΔS_r°

can be calculated from absolute entropies of products and reactants,

 $\Delta S_r^{\circ} = \Sigma S^{\circ}(\underline{\qquad}) - \Sigma S^{\circ}(\underline{\qquad})$

where S° is the absolute standard entropy.

S has an absolute zero – the perfect crystal at T = 0 K (perfectly ordered, no disorder).

For example, consider the decomposition of hydrogen peroxide.

$$\begin{split} & 2H_2O_2(l) \to 2H_2O(l) + O_2(g) \\ & \Delta S_r^{\circ} = \Sigma S^{\circ}(\text{products}) - \Sigma S^{\circ}(\text{reactants}) \\ & \Delta S^{\circ} \quad ? \underbrace{ \Box \Box \Box a^* \underline{\Box \Box \Box a^*} + \Box a^* \underline{\Box \Box a^* \underline{\Box \Box \Box a^*} + \Box a^*} + \Box a^* \underline{\Box \Box a^* \underline{\Box \Box \Box a^*} + \Box a^* \underline{\Box \Box a^* \underline{\Box \Box \Box a^*} + \Box a^* \underline{\Box \Box a^* \underline{\Box \Box \Box a^*} + \Box a^* \underline{\Box a^* \underline{\Box a^* \Box \Box a^* \underline{\Box a^* \underline{a^*} \underline{\Box a^*} \underline{\Box a^* \underline{\Box a^*} \underline{\Box a^*} \underline{\Box a^* \underline{a^*} \underline{\Box a^* \underline{a^*} \underline{\Box a^*} \underline{a^*} \underline{\Box a^*} \underline{\Box a^*} \underline{\Box a^*} \underline{\Box a^*} \underline{\Box a^*} \underline{\Box a^*} \underline{a^*} \underline{\Box a^*} \underline{a^*} \underline{\Box a^*} \underline{a^*} \underline$$

Why is ΔS° positive? The reaction converts liquid \rightarrow liquid and gas.

But is reaction spontaneous at room temperature?

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ = -196 kJ/mqn¹/'4; : (87''M*'____'nL'M¹mol⁻¹) = -233 kJ/mol *Vj g'tgcevkqp'ku''____+

Now consider ice melting at 298.15 K. $H_2O(s) \rightarrow H_2O(l)$

 $\Delta S^{\circ} = Ua^{*}$ ____) - Ua^{*} ____) = 69.91 - 41.32 $\Delta S^{\circ} = 28.59 \text{ J K}^{-1} \text{ mol}^{-1}$ Why is $\Delta S^{\circ} > 0$?

 $\Delta G^{\circ} = 6.95 - 298.15 \text{K}(2.859 \text{ x } 10^{-2} \text{ kJ/K mol}) = -1.57 \text{ kJ/mol}$

Ice melting is spontaneous at room temperature even though ΔH° is positive.

III. FREE ENERGY OF FORMATION, ΔG_{f}

analogous to ΔH_{f}

 ΔG_{f}^{o} = standard Gibbs free energy of formation

= ΔG_r^{o} for formation of 1 mol of compound from its elements in their most stable form in the standard states at P = 1 bar and T = 298.15 K.

Tabulated for many compounds like ΔH_{f}^{o} , but can also be calculated from

 $_$ = $_$ - T Δ S°

For example,

 $C(gr) + O_2(g) \rightarrow CO_2(g)$ $\Delta G^\circ = -394.36 \text{ kJ}/\text{mol} = \Delta G_f^\circ$

 $\Delta G_{\rm f}^{\,\rm o}$ is important because it is a measure of a compound's stability relative to its elements.

If $\Delta G_f^{o} < 0$, a compound is thermodynamically ______ relative to its elements.

If $\Delta G_f^{\circ} > 0$, a compound is thermodynamically ______ relative to its elements.

Free energy tells whether or not a reaction will happen spontaneously, but it tells us _______about the rate of the reaction (for rate information we need kinetics).

To calculate ΔG° for a reaction...

 $\Delta G_r^{\circ} = \Sigma \Delta G_f^{\circ}(products) - \Sigma \Delta G_f^{\circ}(reactants)$

 $OR \qquad \Delta G_{\rm r}{}^\circ = \Delta H_{\rm r}{}^\circ - T\Delta S_{\rm r}{}^\circ$

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.