
Learning Novel Concepts in the Kinship Domain

Daniel M. Roy
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract

This paper addresses the role that novel concepts play in learning good theories. To concretize the discussion, I use
Hinton’s kinship dataset as motivation throughout the paper. The standpoint taken in this paper is that the most compact
theory that describes a set of examples is the preferred theory—an explicit Occam’s Razor. The kinship dataset is a good
test-bed for thinking about relational concept learning because it contains interesting patterns that will undoubtedly be
part of a compact theory describing the examples. To begin with, I describe a very simple computational level theory for
inductive theory learning in first-order logic that precisely states that the most compact theory is preferred. In addition,
I illustrate the obvious result that predicate invention is a necessary part of any system striving for compact theories.
I present derivations within the Inductive Logic Programming (ILP) framework that show how the intuitive theories of
family trees can be learned. These results suggest that encoding regular equivalence directly into the training sets of ILP
systems can improve learning performance. To investigate theories resulting from optimization, I devise an algorithm that
works with a very strict language bias allowing all consistent rules to be entertained and explicitly optimized over for small
datasets. The algorithm, which can be viewed as a special case implementation of ILP, is capable of learning a theory of
kinship comparable in compactness to the intuitive theories humans use regularly. However, this alternative approach falls
short as it is incapable of inventing the unary predicate sex to learn a more compact theory. Finally, I comment on the
philosophical position of extreme nativism in light of the ability of these systems to invent primitive concepts not present
in the training data.

Introduction	 eral because of the semi-decidability of first order logic, there
has been great success at the algorithmic level in the field of
Inductive Logic Programming (ILP). The problem ILP ad-

The core of the intuitive theory of kinship in western culture dresses is: learn a first-order logic theory that, together with
is the family tree, from which any number of queries about provided background knowledge, logically entails a set of ex-
kinship relationships can be answered. Could a machine, pre- amples (Nienhuys-Cheng and de Wolf, 1997).
sented with the kinship relationships between individuals in
a family, learn the intuitive family tree representation?	 Using the ILP framework, it is possible to show how inverse

resolution can devise all three of the basis set predicates that
This paper focuses heavily on a dataset introduced in Hinton

comprise the family tree representation. The most interesting
(1986). In this dataset, a group of individuals are related by

result is the discovery of sex which requires that logical en-
the following relations: father, mother, husband, wife, son,

codings of regular equivalence classes can be combined in an
daughter, brother, sister, uncle, aunt, nephew, niece. The

inverse resolution step to generate the new predicate.3 This
family tree representation efficiently encodes all of these rela­

result suggests that explicitly encoding regular equivalence
tionships using a basis set composed of spousal relationships,
parent/child relationships and the sex attribute.1 To learn	 and other second-order properties of relational datasets may

contribute to their learnability.
this theory, a machine would have to first invent the basis set
and then redefine the existing relations in terms of this basis

To investigate the computational level, I devise a special-case
set.2 How could a machine discover such a basis set?

version of ILP that is optimized to use a very strict set of

According to my computational level theory, the basis set is restrictions on the type of theories it can entertain. By trad-

not discovered at all. Rather, it is a byproduct of an opti- ing expressibility for tractability, it is possible to explicitly

mization process that searches for the most compact theory optimize over the set of all possible rules for each relation in-

that entails a set of examples. At the algorithmic level, the dividually. Unfortunately, optimizing across the relations is

basis set could possibly be discovered through the process of intractable. The resulting rules can be further compressed by

local optimizations that lead to more compact theories. using inverse resolution to invent new predicates that simplify
existing ones. The resulting theory for the kinship domain is

While the computational approach is not computable in gen- comparable in compactness to the family tree representation.

1The sex of the individual is often implicitly specified by the gender of the name.
2Personal communication and class notes of J. Tenenbaum (Tenenbaum, 2004)
3The regular equivalence classes for the kinship dataset are all pairs of generations and sex in the family tree White and Reitz (1983); Kemp

et al. (2004).

Computational Level

Here is a short, computational account of inductive learn­
ing that explicitly prefers compact theories. An example in
this framework shows why novel concepts necessarily arise in
learning the most compact theory.

Essentially, given examples E and background knowledge B,
we are searching for the shortest first-order logic theory T such
that B�T |= E . If we do not restrict the form of the theory T
then this optimization problem is not computable as logical
entailment is semi-decidable in full clausal logic (Nienhuys-
Cheng and de Wolf, 1997). A possible variant of this opti­
mization is to bound the number of steps required to prove
entailment. For example, find the shortest theory that de­
scribes the kinship examples which takes fewer than n steps
to prove entailment. If we restrict T to Horn clauses then
we can guarantee decidability of entailment (Nienhuys-Cheng
and de Wolf, 1997) and, therefore, we can solve the original
optimization problem. The search through programs can be
ordered by evaluating B � T |= E for all programs of length
one, then all programs of length two, and so on. The process
is bounded above by the length of the input examples. The
first such program that logically entails the examples is the
most compact theory.

Of course, the time complexity of this optimization grows
combinatorially with additional objects, examples, and pred­
icates; Investigating non-trivial concept invention by direct
optimization is clearly intractable.

The above computational theory is closely related to the Kol­
mogorov complexity. While inductive theory learning is con­
cerned with developing the most compact theories that ex­
plain a set of examples, the Kolmogorov complexity is simply
equal to the length of the most compact theory (up to an ad­
ditive constant). More precisely, the Kolmogorov complexity
of a set of examples, K(E), satisfies the following inequality
with respect to the length of the compact theory found by the
above optimization, K�(E) (Grunwald and Vitanyi, 2004):

K(E) < K�(E) + O(1)

A quick example shows how search for a compact theory nec­
essarily involves the invention of new predicates. Consider
Figure 1.

On the left of this figure are a set of examples. This example
assumes a “closed world,” which implies that if E |⇐= β then
we can assume ¬β (Nienhuys-Cheng and de Wolf, 1997). In
a set of complete ground clauses, this means that any pair
≡A,B⊆ not mentioned in some relation R implies ¬R(A,B).
In addition, the set of objects mentioned in the examples are
distinct and no other objects exist. On the right is the most
compact theory composed of Horn clauses.4 The theory em­
ploys a predicate not present in the examples. This example
proves that predicate invention is a necessary feature of op­
timal compression. Unfortunately, it is intractable to deter­
mine the optimal theory for examples of even moderate size
by brute-force search. There have been several attempts to

tackle this problem with more elegance. One such attempt
is called Inductive Logic Programming (Nienhuys-Cheng and
de Wolf, 1997).

Algorithmic Level

ILP is an algorithmic level approach to the above computa­
tional level theory. ILP searches through the space of theories
guided by heuristics that seek out compact theories that are
consistent with the examples. However, ILP systems make no
guarantee of optimality. In particular, very few ILP systems
available are capable of predicate invention, a necessary pre­
requisite for optimal theories as shown in the previous section.

Inventing New Predicates in ILP

Regardless of the performance of actual ILP systems on these
problems, it is useful to ask whether these systems could,
in principle, derive the expected relationships from the data.
First, given the basis set, could an ILP system learn the in­
tuitive theories? The PROGOL ILP system developed by
Muggleton can learn a rule for aunt given parent and sister
predicates and a few positive examples (Muggleton, 2004).
That answered, could an ILP system learn the parent predi­
cate on its own?

There are several methods in the ILP literature by which pred­
icates can be invented (Nienhuys-Cheng and de Wolf, 1997,
pg. 176) (Muggleton and Buntine, 1988). The most straight­
forward was developed in Muggleton and Buntine (1988) and
is known as inverse resolution. Figure 2 shows the mechanism
of intra-construction, one of two types of inverse resolution.

p � �, B, � p � �, C, �
q � B p � �, q, � q � C

Figure 2: Predicate invention via inverse resolution: intra-construction

Returning back to the idea of compression and deriving the
most compact theory, how does the intra-construction rule
affect the compactness of the resulting theory? By defining
a metric | · | of the complexity of a term and assuming that
the metric operates compositionally (the metric of a complex
term is the sum of the metric of its parts), it can be shown
that the intra-construction results in a more compact theory
in the case that:

2|p, �, �| + |B, C| > |p, �, �| + 3|q| + |B, C|

|p, �, �| > 3|q| (1)

Assuming that | · | = 1 , then p, β and � need only contain
3 clauses between them to make this derivation more optimal
than the antecedent.

Returning to the kinship example, Figure 3 is a derivation of
the parent predicate using the above intra-construction rule.
Essentially, the invention of the parent predicate is the result
of a pressure to search for a compact theory. In the derivation

4The program being written to prove this (by explicitly searching) is unfinished. However, while I am not proof positive this is the most compact
theory in Horn clauses, I am fairly certain.

A B

C D

A B

C D

R(A, B) Y(A)
R(B, A) Y(B)
R(A, C) Y(C)
R(C, A) R(x, y) � Y(y)
R(B, C)
R(C, B)
R(D, A)
R(D, B)
R(D, C)

Figure 1: Learning Novel Concepts via Optimal Compression (Horn Clauses)

below, two rules for grandfather differ in that one describes a
mother’s father and the other a father’s father. These differ­
ences are combined in an intra-construction derivation, creat­
ing the parent predicate.

grandfather(x, y) � mother(z, y), father(x, z)
grandfather(x, y) � father(z, y), father(x, z)

grandmother(x, y) � mother(z, y), mother(x, z)
grandmother(x, y) � father(z, y), mother(x, z)

parent(x, y) � mother(x, y)
parent(x, y) � father(x, y)

grandfather(x, y) � parent(z, y), father(x, z)
grandmother(x, y) � parent(z, y), mother(x, z)

Figure 3: Intra-construction derivation of parent

Figure 4, below, shows how the spouse predicate could be in­
vented. Again, the invention of the spouse predicate aids to
the compactness of the theory. In this example we have two
rules that describe the set of positive examples of mother-

in-law. They differ solely in whether the clause describes a
husband’s mother or a wife’s mother. Via intra-construction,
the differences between these two rules are merged into a new
predicate, spouse, and the original rule is rewritten to use this
new predicate.

mother-in-law(x, y) � wife(z, y), mother(x, z)
mother-in-law(x, y) � husband(z, y), mother(x, z)
father-in-law(x, y) � wife(z, y), father(x, z)
father-in-law(x, y) � husband(z, y), father(x, z)

spouse(x, y) � wife(x, y)
spouse(x, y) � husband(x, y)

mother-in-law(x, y) � spouse(z, y), mother(x, z)
father-in-law(x, y) � spouse(z, y), father(x, z)

Figure 4: Intra-construction derivation of spouse

What about the sex predicate? Using only the predicates
available in the system it is unclear how an intra-construction

rule could produce a predicate whose meaning can be under­
stood to represent the sex of an individual. Inverse resolution
alone is insufficient. However, if the example dataset is aug­
mented with predicates that describe the regular equivalence
of the kinship tree, it then becomes clear how the sex predicate
could be invented.5

In the derivation below, a binary predicate REGE(x, c) as­
serts that an object x belongs to an equivalence class c. Us­
ing the same intra-construction rule used to derive spouse and
parent, it now becomes clear how the sex predicate could be
invented.

mother(x, y) � parent(x, y), REGE(x, 1)
mother(x, y) � parent(x, y), REGE(x, 3)
mother(x, y) � parent(x, y), REGE(x, 5)
father(x, y) � parent(x, y), REGE(x, 2)
father(x, y) � parent(x, y), REGE(x, 4)
father(x, y) � parent(x, y), REGE(x, 6)
female(x, y) � REGE(x, 1)
female(x, y) � REGE(x, 3)
female(x, y) � REGE(x, 5)

male(x, y) � REGE(x, 2)
male(x, y) � REGE(x, 4)
male(x, y) � REGE(x, 6)

mother(x, y) � parent(x, y), female(x)
father(x, y) � parent(x, y), male(x)

Figure 5: Intra-construction derivation of male/female

This result is interesting as it suggests that latent informa­
tion in networks of relationships (like regular equivalence)
could aid in the learning of relational data. Perhaps regular
equivalence and similar meta-data that make explicit latent
structure could act as “kernel tricks” for ILP systems, adding
additional dimensions to the input data to make it easier to
learn.

5If we were working within second-order logic, we could have the system recognize and report the regular equivalence classes automatically. This
suggest that moving to the higher order logics may provide real advantages in learnability.

Graph Compression

In this section, an alternative to generic inductive logic pro­
gramming is introduced that works by compressing graph rep­
resentations of sets of ground binary relations. The system
can be understood as performing a similar task as ILP with a
language bias that restricts the form of the theories the sys­
tem is capable of entertaining. The algorithm uses inverse
resolution to invent new predicates when patterns exist that
match the antecedent of the intra-construction rule.

Language Bias

Most ILP systems operate with a language bias that is ei­
ther implicit (built into the system) or user-specified. The
language bias can take the form of a restriction in the length
of clauses, types of literals, or even grammars of allowable
clauses. A language bias limits the search space of possible
hypothesis. In this system, the examples presented to the
system are positive examples of binary predicates. Negative
examples are implied via a closed world assumption. Such a
collection of binary predicates can be represented as a graph
whose edges represent relations between objects.

The system learns theories of a very strict form which makes
the compression problem very simple. The grammar of this
subset of first-order clausal logic is shown as Figure 7. It
should be explicitly noted that this language bias is highly
specific to the kinship relationships we wish to learn. The
resulting system is by no means intended to be considered a
serious contribution to ILP. Instead, it is an attempt to think
about the problems normally tackled by ILP from a stand­
point more aligned with the (compression-based) computa­
tional theory outlined earlier. Because of the strict language
bias, we are able to greedily optimize to find compact theories.

In summary, the language bias was chosen to simplify the com­
pression algorithm. Regardless, the combination of predicate
invention with this simple compression mechanism results in
the formation of compact theories of kinship.

R(A, B)

R(x, y) � R1(n1 , x),

R2(n2 , n1),

.
. .

R3(y, nm),
x, n1 , ..., nm , y are distinct
�i.R �= Ri

Figure 7: Language Bias

An interesting aspect of this language bias is that each rule
can be at most the length of the number of objects because
the grammar requires that the universally quantified variables
be distinct. Therefore, there are a finite number of theories
that can describe any finite set of positive examples. In addi­
tion, the grammar prevents recursive definitions by requiring
that the head relation not exist in the body of the clause.

These restrictions tradeoff expressibility for tractability. We
use these simplifications to our advantage to allow some ex­
tent of explicit optimization in the process of devising compact
theories.

Problem Description

This section describes the graph compression problem setup.
We are given a graph G = ≡N , E⊆, where N is a set of nodes

�
and E is a set of labeled edges N ×N × . We are interested
in finding a new graph G� = ≡N , E �⊆, where E � � E , and a set
of rules R of the form in Figure 7 such that:

arg minR � |R| + �|E �|
R�(G�) ∧G G

where | · | is a metric we use to measure complexity, and
R�(G�) is the application of the rules to the graph until a
fixed point is reached. The fixed point, R�(G�), is equivalent
to the original graph G once all edges whose labels do not
exist in G have been removed.

Even this (much simpler) optimization problem is intractable
(optimizing over the ordering of relations grows as O(n!)
where n is the number of relations.6). Therefore, we de­
compose the optimization into separate optimizations for each
heuristic and greedily choose one heuristic at a time. Once
chosen, the remaining relations are re-optimized separately.
This process continues until all the relations are learned.

Greedy Implementation

The implementation of the graph compression optimization is
written in MzScheme and is available in Appendix A. The
input to the system is a graph representing the examples.

The algorithm first creates all valid rules for each of the rela­
tions in the graph (there are finitely many as explained above).
This is done by creating a set of candidate rules for every
positive instance of each relation. Candidate rules for a re­
lation El(x, y) are created by enumerating every acyclic path
between nodes x and y using only edges with labels l� ⇐= l.
This candidate list is then pruned by verifying that no can­
didate rule implies a negative example. For each relation,
there is a set of consistent candidate rules for each positive
instance. These paths are then ordered according to a com­
plexity measure that prefers short rules that explain the most
positive examples. The final candidate rule for a relation is
then formed by the disjunction of the best candidate rule for
each positive instance. In practice, a single rule or disjunc­
tion of a few general rules describes the entire set of positive
instances. By construction, the rule is consistent with the
positive and negative examples.

At each iteration, a relation rule is chosen from the candi­
dates by picking the most compact rule that conflicts with
the fewest other rules (e.g. removing sister early in the pro­
cess causes other rules to become much larger while removing

6Arguably this is not proven and could be solvable efficiently. However, there does not appear to be a problem decomposition that would lead
to a dynamic programming solution.

A B

C E

R

S R

Hazel(A). Yellow(B). Yellow(C). Hazel(E).
R(B, A). S(C, B). R(E, B).

Figure 6: Sample Graph and First-order Logic Ground Clause Equivalent

aunt has little affect on later rules). To prevent mutual recur­
sion, all candidate rules using the selected relation are pruned.
This process repeats until there are no consistent rules that
describe the remaining relations. These relations are the basis
relations, meaning that all the other relations are definable in
terms of these relations.

These rules are then improved by looking for ways to com­
bine disjunctions by predicate invention via inverse resolu­
tion. These new relations are instantiated as new edges in
the graph. This process of generating the basis relations and
looking for new ways to combine disjunctions continues until
there are no candidate disjunctions remaining. At this point,
a final basis set and derived set are generated. The basis set
are ground clauses and the derived set are rules. By construc­
tion, the “application” of the rules to the set of ground clauses
recreates the original graph.

Example: Kinship Data The graph compression algo­
rithm was designed specifically with the kinship dataset in
mind. In the kinship dataset, a group of individuals are
described by a set of relations such as mother, father, son,
daughter, uncle, aunt, sister, etc.. The usual representation
of kinship relationships in western culture is the family tree.
This representations is a very efficient way of representing the
data (see Figure 8) and is most likely used because of this
quality. The complete specification of every relationship in
a sizable family tree will be much larger than the equivalent
specification of the family tree and the set of rules to derive
the remaining relations.

The kinship dataset contains certain patterns, each of which
is addressed by a specific area in the graph compression al­
gorithm. Kinship relationships are defined in terms of paths
between individuals and the names of the steps in these paths.
Our language bias matches this observation exactly and there­
fore we can expect to find theories that match our intuitive
ones.

Walk-through The first pass through the kinship data re­
sults in the following rules:
basis set:

(husband mother wife son daughter)

rules (derived set):
((father ((mother husband) . 6))
(sister ((father daughter) . 3))
(brother ((father son) . 3))

(niece
((husband sister daughter) . 1)
((sister daughter) . 1)
((brother daughter) . 1)
((wife brother daughter) . 1))
(nephew ((niece brother) . 4))

(aunt ((mother brother wife) . 2) ((father sister)

(uncle ((aunt husband) . 4)))

. 2))

The basis set is husband, mother, wife, son, daughter. Two of
the disjunctions for the niece rule overlap. Intra-construction
can derive a new predicate we know as sibling that is the dis­
junction of sister and brother. With the new predicate added
to the graph, the rules are re-learned.

basis set:

(husband mother wife daughter)

derived set:
((son ((daughter sibling) . 6))
(father ((mother husband) . 6))
(sister ((father daughter) . 3))
(brother ((father son) . 3))
(niece
((husband sister daughter) . 1)
((sibling daughter) . 2)
((wife sibling daughter) . 1))
(nephew ((niece brother) . 4))

(aunt ((mother sibling wife) . 2) ((father sibling) . 2))

(uncle ((aunt husband) . 4)))

No further simplifications can be found by applying intra-
construction and so the basis/derived sets represents the final
solution of the graph compression algorithm. Because the
algorithm is able to learn only a very restricted set of theo­
ries, there is no way that the algorithm could learn the com­
mon family tree representation because this representation
requires clauses not allowed by the language bias. In addition
the graph compression mechanism cannot be extended to new
language biases. However, the final basis set encodes the fun­
damental aspects of the family tree representation (husband,
mother, wife, daughter), albeit less efficiently than one that
includes a sex attribute and uses it to further compress the
representation. Another disappointing aspect of these results
is that the rules, though compact, do not match those gen­
erally used by humans to explain kinship relationships. For
example, the uncle rule is simply “aunt’s husband” which is
technically correct with respect to this dataset, but not as
intuitive as “parent’s brother (or brother-in-law).” The rea­
son the algorithm performs in this manner is that it greedily
chooses the best rule at each iteration, largely ignoring the
effect of these decisions on the overall optimality of the re­
sulting theory. While the descriptions of the family relations
are sometimes non-intuitive, they are as compact as those in
the intuitive theory. 7

7Personal communication and class notes of J. Tenenbaum (Tenenbaum, 2004)

A B C D

E F G H

K

I

L

J

Figure 8: Efficient Family Tree Representation: Horizontal edges represent marriage, Vertical represent parent/child links. The nodes are colored according
to their regular equivalence classes.

Philosophy

One of the central questions in philosophy of mind and cogni­
tive science is how humans generate new concepts. Extreme
nativists, like Jerry Fodor, deny this is even possible, believ­
ing instead that we are born with every concept we use in life
and that learning is simply the process of recalling these in­
nate concepts (Laurence and Margolis, 2002). His thesis relies
on the assumption that the primitive concepts that compose
complex concepts are themselves indivisible and cannot be de­
fined in terms of smaller parts. However, his position can be
undermined if we can show how new primitive concepts—not
defined in terms of other concepts—can be learned. Are hu­
mans born with the concept of object? Showing that such a
concept is learnable would not only be a fantastic result but
would answer a question philosophers have wrestled with for
millennia.

Most attempts to define concept learning avoid the issues
raised by Fodor by relying on operational definitions of how
concepts are learned; Concepts are the processes that emerge
when a mechanism interacts with its environment. This oper­
ational approach describes several empiricist attempts to show
how concepts can be bootstrapped from experience. Gary
Drescher’s Schema Mechanism, based on his interpretation of
Piaget’s work with young children, is one such attempt.

In essence, this work describes how a computational mecha­
nism can learn a theory for a relational dataset by construct­
ing new relations and redefining the original relations in terms
of these new concepts in such a way that the resulting the­
ory is more compact than the original. One argument is that
such a mechanism is learning new concepts because these new
relations are not defined in terms of existing concepts.

The only possibly novel concept learned in the kinship dataset
is that of sex. Both parent and spouse, while not present in the
original dataset, are complex concepts formed by the disjunc­
tion of simpler concepts. The sex predicate is unique in that it
is a new concept that appears seemingly from nowhere, help­
ing to define the kinship dataset. To understand whether sex
is a novel, primitive concept, we must consider how the sex
predicate arises at both the algorithmic and computational
levels.

At the algorithmic level (ILP), it appears that the sex predi­
cate is, in fact, not novel as it is the result of an inverse reso­
lution step that combines latent information described by the
regular equivalence of the dataset. Just as parent and spouse
are complex concepts defined in terms of simpler ones, sex is
a complex concept formed by the disjunction of all objects is
the female equivalence classes.8

At the computational level the opposite seems to be true. As
if by magic, new predicates are invented that result in the
most compact theory that entails a set of examples. In the
kinship case, we could imagine that the most compact the­
ory uses a representation similar to that of the family tree
and a set of rules that define the remaining relationships. At
the computational level, these new concepts appear automat­
ically. However, our inability to explain why and when novel
concepts appear should not bestow upon those concepts any
sort of special status. If the sex predicate arises from the la­
tent structure in the dataset, then the sex predicate is not
truly novel because the latent structure is already present in
the examples and need only be squeezed out. Therefore, the
concept of sex is already present in the data and the work
presented in this paper does not undermine Fodor’s nativism.
However, even if we were to assume the position of nativism,
because there is no efficient way of finding these new concepts,
intelligence may in fact be regarded as the ability to efficiently
devise compact theories, in which case, the fact that every­
thing is already known in a strict theoretical sense is of little
consequence.

Conclusion

A computational approach that optimally compresses a set of
examples necessarily requires the invention of predicates. Dis­
covering these predicates is intractable at the computational
level. However, at the algorithmic level, with methods such
as those employed by ILP, we can discover predicates use­
ful for compressing a theory by using inverse resolution. For
the kinship domain it was shown how an ILP system could
in principle learn the three fundamental predicates that com­
prise the family tree representation. While these predicates
are novel in the sense that they are not strictly present in

8In the kinship theory presented in class, the parent, spouse and sex predicates are the basis set in which the remaining of the relationships
are defined. This basis set could have as easily been husband, father and sex. However, while rearranging the ground clauses and rules such that
the new predicates are the ground clauses (the basis set) does elevate the status of these predicates to primitive concepts, it similarly demotes the
status of the original predicates to that of complex concepts. I have primarily concerned myself with how these novel concepts can be learned.
Once they are invented, rearrangements can be made to optimize further. I believe that explaining how they arise is the most important aspect.
Simply inventing new predicates is not a serious algorithmic level theory as it entails an impossibly large expansion in the search space.

the examples, their invention requires that they be defined in
terms of primitive concepts. In the case of the sex predicate
this requires that we augment the system with explicit repre­
sentations of the regular equivalence of the examples. Finally,
because the predicates arise from inverse resolution, they are
not truly novel, primitive concepts and thus do not undermine
the philosophical position of extreme nativism.

Bibliography
R. Cilibrasi and P. Vitanyi. Clustering by compression.	 Submitted

to IEEE Trans. Infomat. Th., 2004.

J. Feldman. Minimization of boolean complexity in human concept
learning. Nature, 407:63–633, 2000.

P.	 Grunwald and P. Vitanyi. Shannon Information and Kol­
mogorov Complexity. Submitted to IEEE Trans. Infomat. Th.,
2004.

G. E. Hinton.	 Learning distributed representations of concepts.
In Proc. Ann. Conf. of the Cognitive Science Society, volume 1,
1986.

C. Kemp, T. L. Griffiths, and J. B. Tenenbaum. Discovering latent
classes in relational data. MIT AI Lab Memo, 19, 2004.

S. Laurence and E. Margolis. Radical concept nativism. Cognition,
86:22–55, 2002.

D. Marr. Artificial intelligence: A personal view.	 Artificial Intelli­

gence, 9:37–48, 1977.

S. Muggleton. Progol software.	 http://www.doc.ic.ac.uk/~shm/
progol.html, December 2004.

S. Muggleton and W. Buntine.	 Machine invention of first order
predicates by inverting resolution. In Proceedings of the 5th
International Workshop on Machine Learning, pages 339–351.
Morgan Kaufmann, 1988.

S. Muggleton and L. D. Raedt. Inductive logic programming: The­
ory and methods. J. Log. Program., 19/20:629–679, 1994.

S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive
Logic Programming, volume 1228. February 1997.

D. Page and A. Srinivasan.	 ILP: a short look back and a longer
look forward. Journal of Machine Learning Research, 4:415–430,
2003.

J. B. Tenenbaum. Personal communications, November 2004.

D. R. White and K. P.	 Reitz. Graph and semigroup homomor­
phisms social networks. 5:193–234, 1983.

A Graph Compression Code

kinship.scm
(define kinship-examples
’(

(father Christopher Arthur)

(father Christopher Victoria)

(father Andrew James)

(father Andrew Jennifer)

(father James Colin)

(father James Charlotte)

(mother Penelope Arthur)

(mother Penelope Victoria)

(mother Christine James)

(mother Christine Jennifer)

(mother Victoria Colin)

(mother Victoria Charlotte)

(parent Christopher Arthur)

(parent Christopher Victoria)

(parent Andrew James)

(parent Andrew Jennifer)

(parent James Colin)

(parent James Charlotte)

(parent Penelope Arthur)

(parent Penelope Victoria)

(parent Christine James)

(parent Christine Jennifer)

(parent Victoria Colin)

(parent Victoria Charlotte)

(husband Christopher Penelope)

(husband Andrew Christine)

(husband Arthur Margaret)

(husband James Victoria)

(husband Charles Jennifer)

(wife Penelope Christopher)

(wife Christine Andrew)

(wife Margaret Arthur)

(wife Victoria James)

(wife Jennifer Charles)

(spouse Christopher Penelope)

(spouse Andrew Christine)

(spouse Arthur Margaret)

(spouse James Victoria)

(spouse Charles Jennifer)

(spouse Penelope Christopher)

(spouse Christine Andrew)

(spouse Margaret Arthur)

(spouse Victoria James)

(spouse Jennifer Charles)

(son Arthur Christopher)

(son Arthur Penelope)

(son James Andrew)

(son James Christine)

(son Colin Victoria)

(son Colin James)

(daughter Victoria Christopher)

(daughter Victoria Penelope)

(daughter Jennifer Andrew)

(daughter Jennifer Christine)

(daughter Charlotte Victoria)

(daughter Charlotte James)

(brother Arthur Victoria)

(brother James Jennifer)

(brother Colin Charlotte)

(sister Victoria Arthur)

(sister Jennifer James)

(sister Charlotte Colin)

(sibling Arthur Victoria)

(sibling James Jennifer)

(sibling Colin Charlotte)

(sibling Victoria Arthur)

(sibling Jennifer James)

(sibling Charlotte Colin)

(uncle Arthur Colin)

(uncle Charles Colin)

(uncle Arthur Charlotte)

(uncle Charles Charlotte)

(aunt Jennifer Colin)

(aunt Margaret Colin)

(aunt Jennifer Charlotte)

(aunt Margaret Charlotte)

(nephew Colin Arthur)

(nephew Colin Jennifer)

(nephew Colin Margaret)

(nephew Colin Charles)

(niece Charlotte Arthur)

(niece Charlotte Jennifer)

(niece Charlotte Margaret)

(niece Charlotte Charles)))

(define (kinship-regular-equivalence)
’((christopher 1)

(andrew 1)

(penelope 2)

(christine 2)

(margaret 3)

(victoria 3)

(jennifer 3)

(arthur 4)

(james 4)

(charles 4)

(colin 5)

(charlotte 6)))

(define first-literal car)
(define remaining-literals cdr)
(define get-relation car)
(define get-objects cdr)

(define (remove-last lst)
(reverse (cdr (reverse lst))))

(define (length< l1 l2)
(< (length l1) (length l2)))

(define (first-n lst n)
(cond ((or (<= n 0) (not (pair? lst))) ’())

(else
(cons (car lst) (first-n (cdr lst) (- n 1))))))

(define (union . l)
(let loop ((l l)

(b (list)))
(if (null? l)

b

(loop (cdr l)

(let loop ((a (car l))

(b b))

(if (null? a)

b

(if (member (car a) b)

(loop (cdr a) b)

(loop (cdr a) (cons (car a) b)))))))))

(define (setdiff a b)
(filter (lambda (aval) (not (member aval b))) a))

(define (intersect a . bs)
(let loop ((a a)

(bs bs))
(cond ((null? bs) a)

((null? a) a)

(else

(loop

(filter (lambda (aval) (member aval (car bs))) a)

(cdr bs))))))

(define (extract extractor lst)
(let loop ((lst lst)

(items ’()))
(if (null? lst)

items

(loop (cdr lst)

(union (extractor (car lst))

items)))))

(define (extract-relations examples)
(extract (lambda (literal) (list (get-relation literal))) examples))

(define (extract-objects examples)
(extract get-objects examples))

(define (query-examples examples queryliteral)
(if (null? examples)

#f

(let ((literal (first-literal examples)))

(or (equal? literal queryliteral)

(query-examples (remaining-literals examples)

queryliteral)))))

(define (build-graph relations relnames objects objnames adjgraphs examples coloring)
(list relations relnames objects objnames adjgraphs examples coloring))

(define (vector-select v lst)
(let loop ((i (vector-length v))

(lst lst)

(result ’()))

(if (> i 0)
(loop (+ i 1)

(cdr lst)

(if (= 1 (vector-ref v (- i 1)))

(cons (car lst) result)

result))

result)))

(define (find lst)
(let loop ((i 0)

(result ’())

(lst lst))

(if (null? lst)

(reverse result)

(loop (+ i 1)

(if (car lst)

(cons i result)

result)

(cdr lst)))))

(define (index-of i lst)
(find (map (lambda (q) (equal? i q)) lst)))

(define (first-index-of i lst)
(car (index-of i lst)))

(define identity (lambda (x) x))

(define graph-relations car)

(define graph-relnames cadr)

(define graph-objects caddr)

(define graph-objnames cadddr)

(define graph-adjgraphs (lambda (graph) (cadddr (cdr graph))))

(define graph-examples (lambda (graph) (cadddr (cddr graph))))

(define graph-coloring (lambda (graph) (cadddr (cdddr graph))))

(define (graph-select-relation graph relation)

(vector-ref (graph-adjgraphs graph) relation))

(define (graph-get-all-edges graph relation)
(let ((relgraph (graph-select-relation graph relation)))
(apply append

(map (lambda (obj1)
(map (lambda (obj2)

(list obj1 obj2))
(find (vector->list (vector-ref relgraph obj1)))))

(build-list (vector-length relgraph) identity)))))
(define (graph-get-edges graph relation node)
(let ((relgraph (graph-select-relation graph relation)))
(find (vector->list (vector-ref relgraph node)))))

(define edge-start-node car)
(define edge-end-node cadr)
(define (path-last-node path) (caar path))
(define (graph-query-edge graph relation obj1 obj2)
(vector-ref (vector-ref (vector-ref (graph-adjgraphs graph) relation) obj1) obj2))

(define (graph-list-edges graph relation obj1)
(find (vector->list (vector-ref (vector-ref (graph-adjgraphs graph) relation) obj1))))

(define (parse-examples examples coloring)
; take a list of examples, extract the relations, generate graphs and return
; lists of objects, the graphs, etc
(let* ((relations (extract-relations examples))

(relnames (map symbol->string relations))

(objects (extract-objects examples))

(objnames (map symbol->string objects))

(adjgraphs (build-vector

(length relations)

(lambda (relation)

(build-vector

(length objects)

(lambda (obj1)

(build-vector

(length objects)

(lambda (obj2)

(query-examples examples

(list (list-ref relations relation)
(list-ref objects obj1)
(list-ref objects obj2))))))))))

(coloring (lambda (object)
(if (symbol? object)

(cadr (assoc object coloring))

(cadr (assoc (list-ref relations object) coloring))))))

(build-graph relations relnames objects objnames adjgraphs examples coloring)))

(define kinship-graph (parse-examples kinship-examples kinship-regular-equivalence))

(require (lib "list.ss" "srfi/1"))

(define (complexity rules)
(let loop ((complexity 0)

(rules rules))
(if (null? rules)

complexity

(let ((rule (car rules)))

(loop (+ complexity

(apply + 1 (map (lambda (subrule) (length (car subrule))) (cdr rule))))

(cdr rules))))))

(define (reachable-set graph relationpath startnode)
(let loop ((queue (list (list startnode)))

(relationpath relationpath))
(if (or (null? relationpath) (null? queue))

(map car queue) ; grab end nodes

(let ((relation (car relationpath)))

(loop (append-map (lambda (partial-path)

(let ((lastnode (car partial-path)))

(filter pair?

(map (lambda (node)

(if (member node partial-path)

’()
(cons node partial-path)))

(graph-list-edges graph relation lastnode)))))

queue)

(cdr relationpath))))))

(define (trim-invalid graph relation revrelationpaths)
; remove rules that imply edges that are negative
;(printf "trimming... ")
(map (lambda (revrules)

(filter (lambda (revrule)

(let ((rule (reverse revrule)))

(let loop ((startnode (- (length (graph-objects graph)) 1)))
;(printf "checking ~a (~a) ~n" startnode (map (lambda (relation) (list-ref (graph-relations graph) relation)) rule))
(if (< startnode 0)

#t ; rule ok!

(let ((reachable (reachable-set graph rule startnode))

(realreachable (graph-list-edges graph relation startnode)))
;(printf "reachable ~a~nreal reach ~a~n~n" reachable realreachable)
; need to make sure that all of positives are in reachable
; need to make sure that none of negatives are in reachable
(and (null? (setdiff reachable

realreachable))

(loop (- startnode 1))))))))

revrules))

revrelationpaths))

(define (findrelationpaths graph relation disallowedrelations maxsize)
(let ((allowable (setdiff (build-list (length (graph-relations graph)) identity)

(union (list relation) disallowedrelations))))
(let loop ((fcpaths ’())

(edges (graph-get-all-edges graph relation)))

(printf "~n")

(if (null? edges)

fcpaths
(let ((edge (car edges)))

;(printf "learning about ~a(~a,~a)~n"

; (list-ref (graph-relnames graph) relation)

; (list-ref (graph-objnames graph) (edge-start-node edge))

; (list-ref (graph-objnames graph) (edge-end-node edge)))

(loop (cons
(compress-paths (findpaths graph

allowable

(edge-start-node edge)

(edge-end-node edge)

maxsize))

fcpaths)

(cdr edges)))))))

(define (choose-covering setofrelationpaths)
; one idea is to calculate covering-size for each relationpath and then greedily choose
; the largest covering until the entire set is covered... i tihnk there is a optimum way
; of doing this using dynamic programming (!!)
(let ((setofrelationpaths (map (lambda (relationpaths)

(map (lambda (rp)

(cons rp (apply +

(map (lambda (rps)

(if (member rp rps) 1 0))

setofrelationpaths))))

relationpaths))

setofrelationpaths)))

(let ((sorted-rps (map (lambda (rps)

(quicksort rps (lambda (rp1 rp2)

(or (> (cdr rp1) (cdr rp2))

(and (= (cdr rp1) (cdr rp2))

(length< (car rp1) (car rp2)))))))

setofrelationpaths)))

(if (member ’() sorted-rps)

’no-rule

(union (map car sorted-rps))))))

(define (pick-optimal-covering sorted-rps)
(if (member ’() sorted-rps)

’no-rule

(union (map car sorted-rps))))

(define (create-order setofrelationpaths)
(printf "ordering... ")
; one idea is to calculate covering-size for each relationpath and then greedily choose
; the largest covering until the entire set is covered... i tihnk there is a optimum way
; of doing this using dynamic programming (!!)
(let ((setofrelationpaths (map (lambda (relationpaths)

(map (lambda (rp)

(cons rp (apply +

(map (lambda (rps)

(if (member rp rps) 1 0))

setofrelationpaths))))

relationpaths))

setofrelationpaths)))

(let ((sorted-rps (map (lambda (rps)

(quicksort rps (lambda (rp1 rp2)

(or (> (cdr rp1) (cdr rp2))

(and (= (cdr rp1) (cdr rp2))

(length< (car rp1) (car rp2)))))))

setofrelationpaths)))

sorted-rps)))

(define (build-rule-from-paths graph dop)
(if (member ’() dop)

’no-rule

(map (lambda (conjunction)

(cons

(map (lambda (relation)

(list-ref (graph-relations graph) relation))

(car conjunction))

(cdr conjunction)))

dop)))

(define (findpaths graph allowable startnode endnode maxsize)
(printf "finding paths... ")
(let loop ((queue (list (list (list startnode -1))))

(successpaths ’())
(count 0))

;(printf "queue = ~a~n" queue)

;(printf "~a " (length queue))

(if (or (null? queue) (null? maxsize) (>= count maxsize))

successpaths
(let* ((path (car queue))

(queue (cdr queue))

(lastnode (path-last-node path)))

;(display path)

;(display lastnode)(newline)

(if (equal? lastnode endnode)

(loop queue

(cons path successpaths)

(+ count 1))

(loop (append queue

(append-map

(lambda (relationgraph)

(filter-map

(lambda (object-node)

(if (and (not (member object-node (map car path)))

(graph-query-edge graph relationgraph lastnode object-node))

(begin
;(printf "new path! ~a~n" (cons (list object-node relationgraph) path))
(cons (list object-node relationgraph) path))

#f))
(build-list (length (graph-objects graph)) identity)))

allowable))

successpaths

count))))))

(define (compress-paths paths)
(printf "compressing... ")
(let loop ((paths paths)

(cpaths ’()))
(if (null? paths)

cpaths

(let ((path (remove-last (map cadr (car paths))))

(paths (cdr paths)))
(if (member path cpaths)

(loop paths cpaths)

(loop paths (cons path cpaths)))))))

(define (remove-nth lst n)
(cond ((null? lst) lst)

((<= n 0) (cdr lst))

(else

(cons (car lst) (remove-nth (cdr lst) (- n 1))))))

(define (generate-allrules graph allowable donotdefine)
(if (file-exists? "allrules.output")

(printf "FILE ALREADY EXISTS!")

(let* ((disallowedrelations (setdiff (graph-relations graph) allowable))

(allrules (map (lambda (relation)
(let* ((junk (printf "~ngenerating allrules for ~a" relation))

(relationindex (first-index-of relation (graph-relations graph)))
(disallowedrelations (map (lambda (relation) (first-index-of relation (graph-relations graph)))

disallowedrelations))
(relationpaths (findrelationpaths graph relationindex disallowedrelations 100))
;(relationpaths (map (lambda (lst) (first-n lst 100)) relationpaths))
(relationpaths (trim-invalid graph relationindex relationpaths))
(relationpaths (create-order relationpaths)))

relationpaths))
(setdiff (graph-relations graph) donotdefine))))

(with-output-to-file "allrules.output" (lambda () (write allrules))))))

(define (optcompress graph donotdefine elimination-order)
(let* ((allrules (with-input-from-file "allrules.output" (lambda () (read)))))
(let elimloop ((rules (list))

(allrules allrules)

(relations (setdiff (graph-relations graph) donotdefine))

(elimination-order elimination-order))

(printf "finding new rule~n")

;(pretty-print rules)

(if (null? allrules)

rules
(let* ((coverings (map (lambda (relationpaths)

(pick-optimal-covering relationpaths))
allrules))

(possiblerules (map (lambda (rule relation)
(cons relation rule))

coverings relations))
(possiblerules (filter (lambda (x) (not (equal? (cdr x) ’no-rule)))

possiblerules))
(possiblerules (map (lambda (rule)

(cons (apply + (map (lambda (otherrule)
(if (ormap (lambda (subrule)

(member (first-index-of (car rule) (graph-relations graph))
(car subrule)))

(cdr otherrule))
1 0))

possiblerules))
rule))

possiblerules))
(sortedrules (quicksort possiblerules

(lambda (r1 r2)
(cond ((< (car r1) (car r2)) #t)

((> (car r1) (car r2)) #f)
((< (length (cddr r1)) (length (cddr r2))) #t)
((> (length (cddr r1)) (length (cddr r2))) #f)
(else
(< (apply max (map cdr (cddr r1)))

(apply max (map cdr (cddr r2)))))))))

(junk (pretty-print sortedrules))

(sortedrules (map cdr sortedrules)))

(if (null? sortedrules)

rules

(let* ((newrule (if (null? elimination-order)

(first sortedrules)
(car (filter (lambda (rule) (equal? (car rule) (car elimination-order))) sortedrules))))

(rel (car newrule)))
(elimloop

(cons (cons (car newrule) (build-rule-from-paths graph (cdr newrule))) rules)

(map (lambda (posexamples)

(map (lambda (posexample)
(filter (lambda (rule)

(not (member (first-index-of rel (graph-relations graph)) (car rule))))
posexample))

posexamples))
(remove-nth allrules (first-index-of rel relations)))

(setdiff relations (list rel))

(if (null? elimination-order)

elimination-order

(cdr elimination-order))))))))))

; DO NOT DEFINE

(define do-not-define ’(parent spouse sibling))

; ALLOWABLE RELATIONS

;(define allowablerelations (graph-relations kinship-graph))

(define allowablerelations (setdiff (graph-relations kinship-graph) ’(parent spouse)))

;(define allowablerelations ’(husband mother wife son daughter))

;(define allowablerelations ’(husband parent wife spouse son daughter))

; GENERATE ALL RULES and COMPRESS

(generate-allrules kinship-graph allowablerelations do-not-define)

(define kinship-rules (optcompress kinship-graph do-not-define ’(uncle))) (pretty-print kinship-rules)

;(define derived-set (setdiff (graph-relations kinship-graph) (map caar kinships-rules)))

(complexity kinship-rules)

(setdiff (graph-relations kinship-graph) (append (map car kinship-rules) do-not-define))

