
 

Introduction to Neural Computation – 9.40 

• Prof. Michale Fee, Instructor 
• Daniel Zysman, Technical instructor 
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Texts: Selected readings 

• Berg, Random Walks in Biology 
• Dayan & Abbott, Theoretical Neuroscience. 
• Hille, Ionic Channels of Excitable Membranes 

…and others 

2 



     
     

      
         

     

What is neural computation? 

• Brain and cognitive sciences are no longer primarily descriptive 
– Engineering-level descriptions of brain systems. 

Diagram Ⓒ Jeff Dean (adapted from DiCarlo & Cox, 2007). All rights 
reserved. This content is excluded from our Creative Commons License. 
For more information see https://ocw.mit.edu/help/faq-fair-use/. 

Figure courtesy of Wormbook. License: CC BY. Eisenmann, D. M., ed. 
The C. elegans Research Community, doi/10.1895/wormbook.1.7.1. 3 



 

	
	

New technologies for neuronal activity 
measurements 

Video 
YaleCampus.	 "Imaging	 Brain Activity	 
Across 	the 	Mouse 	Cortex." YouTube. 

Crair Lab, Yale Univ 
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What is neural computation? 

• Brain and cognitive sciences are no longer primarily descriptive 
– Engineering-level descriptions of brain systems. 

• Use mathematical techniques to analyze neural data in a way that
allows us to relate it to mathematical models. 

• In this course we will have the added component that we will apply 
these techniques to understand the circuits and computational
principles that underlie animal behavior. 

5 



	 	 	 	 	

Neural circuits that control bird song 

See Lecture 1 video recording for	 playback 
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What is neural computation? 

• Computational and quantitative approaches are also important in 
cognitive science. 

• Importance of computation and quantitation in medical sciences 
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Course Goals 

• Understand the basic biophysics of neurons and networks 
and other principles underlying brain and cognitive 
functions 

• Use mathematical techniques to 
– analyze simple models of neurons and networks 
– do data analysis of behavioral and neuronal data (compact 

representation of data) 

• Become proficient at using numerical methods to 
implement these techniques (MATLAB®) 
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Topics 

Neuronal biophysics 	and	model 	neurons Differential 	equations 

Neuronal	 responses and tuning curves Spike sorting, PSTHs and firing rates 

Neural	 coding and receptive fields Correlation and convolution 

Feed forward networks and perceptrons Linear 	algebra 

Data analysis,	 dimensionality reduction Principle Component Analysis and SVD 

Short-term memory,	 decision making Recurrent networks, eigenvalues 

Sensory integration Bayes	 rule 
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Skills you will have 

• Translate a simple model of neurons and neural circuits into a 
mathematical model 

• Be able to simulate simple models using MATLAB® 

• Be able to analyze neuronal data (or model output) using 
MATLAB® 

• Be able to visualize high dimensional data. 

• Be able to productively contribute to research in a 
neuroscience lab! 
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Problem sets 

• MATLAB® will be used extensively for the problem sets. 
– Free for students. Please install on your laptop. 

• We will use live scripts for Pset submissions. 
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Introduction to Neural 
Computation 

Michale Fee 
MIT BCS 9.40 — 2018 

Lecture 1 – Ionic Currents 
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A mathematical model of a neuron 
• Equivalent circuit model

gNa gK gL

Vm

EL
C IeEK + ENa

+ + 

100 

• A conceptual model based on simple
components from electrical circuits 0 

−100

Time (ms) 

• A mathematical model that we can use
to calculate properties of neurons

V
m

 

0 100 200 300 

  

    

      
   

0

0.1

0.2

0 100 200 300 
Time (ms) 

13 



 
   

       

              
         
           

              
            

        
      

Why build a model of a neuron? 
• Neurons are very complex. 

• Different neuron types are defined by the genes that are expressed and their 
complement of ion channels 

• Ion channels have dynamics at different timescales, voltage ranges, inactivation 

Figures removed due to copyright restrictions. Left side is Figure 3a: Spectral tSNE plot of 13,079 
neurons, colored according to the results of iterative subclustering. Campbell, J., et al. "A 
molecular census of arcuate hypothalamus and median eminence cell types." Nature Neuroscience 
20, pages 484–496 (2017). Right side is Figure 1: Representation of the amino acid sequence 
relations of the minimal pore regions of the voltage-gated ion channel superfamily. Yu, F.H. and 
W.A. Catterall. "The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and 
Ionic Homeostasis." Science's STKE05 Oct 2004: re15. 
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Neurons are extremely complex 
• Ion channel and morphological diversity lead to diversity 

of firing patterns 

• It’s hard to guess how morphology and ion channels lead 
to firing patterns 

• … and how firing patterns control circuit behavior 

Figures removed due to copyright restrictions. Left side source unknown. Right side is Figure 6.1: 
Multiple firing patterns in cortical neurons. In: Gerstner, W., et al. Neuronal Dynamics. Cambridge 
University Press. 
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A mathematical model of a neuron 
• Equivalent circuit model 

gNa gK gL 

Vm 

EL
C Ie + ENa EK 

+ + 

• Different parts of this circuit do different interesting things 
– Power supplies 
– Integrator of past inputs 
– Temporal filter to smooth inputs in time 
– Spike generator 
– Oscillator 16 



      

            
     

Ionic currents 

gNa gK gL 

Vm 

Ie + ENa EK EL 
C 

+ + 

What are the wires of the brain? 

In the brain (in neurons), current flow results from the movement of 
ions in aqueous solution (water). 
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Basic electrochemistry 
• Water is a polar solvent 
• Intracellular and extracellular space is filled with salt 

solution (~100mM) H+ 

H+ 

– 6x1019 ions per cm3 (25Å spacing) O- O- H+
H+ 

O-

H+ O-
Na 
O 
+
- H+ 

H+ Cl- H+ 

H+ H+ 

H+H+ 
O-

• Currents flow through a salt solution by two key 
mechanisms: + 

I 

- ΔV 

o Diffusion 

o Drift in an electric field 
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Learning objectives for Lecture 1 

• To understand how the timescale of diffusion relates to 
length scales 

• To understand how concentration gradients lead to 
currents (Fick’s First Law) 

• To understand how charge drift in an electric field leads 
to currents (Ohm’s Law and resistivity) 
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Thermal energy 
• Every degree of freedom comes to thermal equilibrium with 

an energy proportional to temperature (Kelvin, K) 

• The proportionality constant is the Boltzmann constant (k) 
kT = 4x10−21 Joules at 300K) 

kT 1 2 1 vx 
2 • Kinetic energy : = 

2 
mvx = kT 

m 2 

• The mass of a sodium ion is 3.8x10-26 kg 

vx 
2 = 105m2 / s2 ⇒ vx = 3.2×102 m/s 

This would cross this 10m classroom in 3/10 second! 

Here we follow ‘Random Walks in Biology’ 
Howard C. Berg,	 Princeton Univ Press 1993 20 



         
    

 

	 	 	 	 	

What is diffusion? 
• A particle in solution undergoes collisions with water molecules very 

often (~1013 times per second!) that constantly change its direction 
of motion. 

Collisions produce a ‘random walk’	 in space 
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Spatial and temporal scales 
Diffusion is fast at short length scales and slow at long length scales. 

• To diffuse across a cell body (10um) it takes an ion 50ms 

• To diffuse down a dendrite (1mm) it takes about 10min 

• How long does it take an ion to diffuse down a motor neuron axon (1m)? 

10	years! 
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Distribution of particles resulting from diffusion 
in 1-D 

• On average particles stay 
clustered around initial position 

• Particles spread out around 
initial position 

• We can compute analytically 
properties of this distribution! 
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• An ensemble of particles diffusing 
from a point acquires a Gaussian 
distribution 

• This arises from a binomial 
distribution for large number of 
time-steps (The probability of the 
particle moving exactly k steps to 
the right in n steps will be: 

⎛ n⎞ 
P(k;n, p) = 

⎠⎟ 
pk (1− p)n−k 

⎝⎜ k 

Gaussian Distribution 

    
     

     
     

   
     

    

 

1 
0 

e− x2 /4 Dt lim P(k;n, p) = 
np→∞ 4π Dt 
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Random walk in one dimension 
• We can mathematically analyze the properties of an ensemble of 

particles undergoing a random walk 

• Consider a particle moving left or right at a fixed velocity vx for a τ 
time before a collision. 

• Imagine that each collision randomly resets the direction 

• Thus, on every time-step, 
– half the particles step right by a distance δ = +vxτ 

– and half the particles step to the left by a distance δ 
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Random Walk in 1-D 
• Assume that we have N particles that start at position x=0 at time 

t=0 

• xi(n) = the position of the ith particle on time-step n: n = t /τ 

• Assume the movement of each particle is independent 

• Thus, we can write the position of each particle at time-step n as a 
function of the position at previous time-step 

xi (n) = xi (n −1) ± δ 

• Use this to compute how the distribution evolves in time! 
26 



       

	 	 	 	 	 	 	 		 	 	

Average displacement is zero 
• What is the average position of our ensemble? 

= xi (n) i 
1 ∑ xi (n) xi (n) = xi (n −1) ± δ N i 

= 
1 ∑ [xi (n −1) ± δ ] N i 

= 
1 ∑ [xi (n −1)] + 

1 ±δ (
i 
∑ 

0 

) 
N i N 

= xi (n −1) xi (n) i i 

Here we follow ‘Random Walks in Biology’	 Howard C. Berg,	 Princeton Univ Press 1993 27 



 
   

   

    
   

Distribution of particles resulting from diffusion 
in 1-D 

• On average particles stay 
clustered around initial 
position 

• Particles spread out around 
initial position 

• We can compute analytically 
properties of this 
distribution! 
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How far does a particle travel due to diffusion? 

• We want to compute an average ‘absolute value’ distance from 
origin… Root mean square distance 

x(n) → x2 (n) 

xi (n) = xi (n −1) ± δ 
Compute variance 

xi 
2 (n) = (xi (n −1) ± δ )2 

1 = N ∑ xi 2 (n) = xi 
2 (n −1) ± 2δ xi (n −1) + δ 2 x2 (n) 

i 0 

±2δ xi (n −1) δ 2 x2 (n) = x2 (n −1) + + 

x2 (n) = x2 (n −1) + δ 2 
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How far does a particle travel due to diffusion? 

+ δ 2 x2 (n) = x2 (n −1) 

• Note that at each time-step, the variance grows by δ 2 

= nδ 2 x2 (n) x2 (0) = 0 , x2 (1) = δ 2 , x2 (2) = 2δ 2 , ... 

δ 2t = , n = t /τ xi 
2 ( )t 

τ 

xi 
2 = 2Dt, D = δ 2 / 2τ (Diffusion coefficient) 

x2 = 2Dt 
30 



Spatial and temporal scales

Diffusion is fast at short length scales and slow at long length scales. 
Typical diffusion constants for small molecules and ions are ~10-5

cm2/s

• L = 10μm = 10-3 cm       t = 10-6(cm2)/2x10-5(cm2/s)  = 50 ms

• L = 1mm = 10-1 cm        t = 10-2(cm2)/2x10-5(cm2/s)  = 500 s

• L = 1000mm = 102 cm        t = 104(cm2)/2x10-5(cm2/s)  =                                          

500,000,000 seconds!!
31

  L = 2Dt   L
2 = 2Dt   t = L2 2D



Fick’s first law
• Diffusion produces a net flow of particles from regions of high concentration to 

regions of lower concentration. 

• The flux of particles is proportional to the concentration gradient.

32

N(x) N(x+δ)

x x+δ

is	the	number	of	particles	in	
the	box	at	position	x
N(x)

1
2N(x)

  
1
2N(x+δ)

is	the		net	number	of	particles	moving	to	
the	right	in	an	interval	of	time	
  
1
2 N(x)−N(x+δ)[ ]

 τ

  
Jx =−D 1

δ
[ϕ(x+δ)−ϕ(x)]

  
Jx =−D ∂ϕ

∂x



Diffusion produces a net flux of particles down a 
gradient

K+

K+

K+

K+

K+
K+

K+

K+

K+

K+

K+
K+

K+

K+

x

 ϕ(x)

  
Jx =−D ∂ϕ

∂x

• Each particle diffuses 
independently and 
randomly!

• Eventually all concentration gradients go away…

• And yet concentration 
gradients produce currents!
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Current flow in neurons obeys Ohm’s Law

34

ΔV

I
+

R

In a wire, current flow is 
proportional to voltage difference

where
– I  is current (Amperes, A)
– ΔV is voltage (Volts, V)
– R is resistance (Ohms, Ω)

I = ΔV
R

Ohm’s Law



Where does Ohm’s Law come from?
Consider a beaker filled with salt solution, two electrodes, and a 
battery that produces a voltage difference between the electrodes.

+- ΔV

I

L

• The electric field produces a force which, in a solution, causes an 
ion to drift with a constant velocity — a current

35

V(x)

x

V- V+

 
E =
ΔV
L

ΔV

 

!
E

  

!
F=q

!
E• Force:

K+



Ion currents in an electric field
Currents are also caused by the drift of ions in the presence of an 
electric field.

+- ΔV

I

L

• The electric field produces a force which, in a solution, causes an 
ion to drift with a constant velocity — a current
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K+

V(x)

x

V- V+

 
E =
ΔV
L

ΔV

 

!
E

• Why constant velocity?



Ion currents in an electric field
Currents are also caused by the drift of ions in the presence of an 
electric field.
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K+

V(x)

x

V- V+

 
E =
ΔV
L

ΔV

 

!
E

  
=

D
kT

q
!
E( )

 f = kT /D

• Einstein –Smoluchovski relation

  

!vd =
D
kT
!
F

• Drift velocity is given by

  
!
F = f !vd

• Einstein realized that this is just a result of viscous drag (or friction)



Currents are also caused by the drift of ions in the presence of an 
electric field.

• The electric field produces a force which, in a solution, causes an 
ion to drift with a constant velocity — a current

38

Ion currents in an electric field

I ∝ vd A

I ∝ E A =
ΔV
L
A

K+

V(x)

x

V- V+

 
E =
ΔV
L

ΔV

 

!
E



+- ΔV

I

Surface	area	A

L

In a solution, current flow per unit area is proportional to 
voltage gradients

• Thus the resistance is given by:

R = ρL
A

39

Ohm’s Law in solution

I = ΔV
L
A

• Let’s make this look more like Ohm’s Law

I = A
ρL
⎛

⎝
⎜

⎞

⎠
⎟ ΔV

1
ρ

⎛

⎝
⎜

⎞

⎠
⎟ =			resistivity	(Ω.m) ρ I = 1

R
ΔV



Resistivity of intra/extra cellular space

+- V

I

Surface	
area	A

L• ρ = 1.6 μΩ.cm for copper

• ρ = ~60 Ω.cm for mammalian saline – the brain 
has lousy conductors! 

• Resistance of a volume of 
conductive medium is given by

R = ρL
A

40

• The brain has many specializations to deal with lousy wires…



Learning objectives for Lecture 1

• To understand how the timescale of diffusion relates to 
length scales
– Distance diffused grows as the square root of time

• To understand how concentration gradients lead to 
currents (Fick’s First Law)
– Concentration differences lead to particle flux, proportional to 

gradient 

• To understand how charge drift in an electric field leads 
to currents (Ohm’s Law and resistivity) 
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I
A

= qϕvd
 ϕ =	ion	density	(ions	per	m3)

=	ionic	charge	(Coulombs	per	ion)
=	ion	valence	times	1.6x10-19 Coulombs

 q= ze

Current density (Coulombs per second per unit area) is just drift 
velocity times the density of ions times the charge per ion.

42

(Extra slide) Derivation of resistivity

  

I
A

= qϕ D
kT

qE( )

• Plugging in drift velocity from above, we get:



Derivation of resistivity

  

I
A

=
q2ϕD
kT

E

• Thus, the current density (coulombs per second per unit area is 
just proportional to the electric field:

I
A
= 1

ρ
⎛
⎝⎜

⎞
⎠⎟
E

43

  
ρ=

kT
q2ϕD

=			resistivity	(Ω�m)

• Solving for       we get: ρ



Extra slides on derivation of
Fick’s first law

We will now use a similar approach to derive a macroscopic 
description of diffusion – a differential equation that describes the the 
flux of particles from the spatial distribution of their concentration.

A	is	the	area	of	the
interface	between

the	boxes

44

N(x) N(x+δ)

x x+δ

is	the	number	of	particles	in	
a	box	(of	length	δ)	at	position	x
N(x)

1
2N(x)

  
1
2N(x+δ)

is	the		net	number	of	particles	moving	to	
the	right	in	an	interval	of	time	
  
1
2 N(x)−N(x+δ)[ ]

 τ



  
Jx =−

1
Aτ
1
2
[N(x+δ)−N(x)]

We can calculate the flux in units of particles per second 
per area

Note:	To	get	density	(ions/m3)	from	molar	
concentration	(mol/L),	you	have	to	
multiply	by	NAx10-3.	(NA is	Avagadro’s
Number	=	6.02x1023)

Extra slides on derivation of 
Fick’s first law

Particles	per	unit	volume

  
Jx =−D 1

δ
[ϕ(x+δ)−ϕ(x)]

Density	- particles	per	unit	volume

  

multiply by δ2 / δ2

Jx =−
δ2

2τ
1
δ
N(x+δ)
Aδ

−
N(x)
Aδ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  
Jx =−D ∂ϕ

∂x

N(x) N(x+δ)

x x+δ
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