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Final Exam Study Guide 2018 
 
For all plots label your axes and whenever possible include a numerical scale with 
units. 
 
Useful formulas: eigenvalues and eigenvectors of 2 by 2 symmetric matrices. 
 
A symmetric 2 by 2 matrix has this general form: 

   

The eigenvalues of A are obtained by solving: 
 

   
Which leads to these formulas: 

   

The eigenvectors span the following directions: 

   

Note that these are not unit vectors! 
These formulas will be given to you and are only valid for 2 by 2 symmetric matrices. 
 
1. Perceptrons 
 
You will be presented with a data set plotted in the input space u1-u2, where a perceptron 
can correctly classify the examples.  
 
We expect you to be able to: 
 

A. Sketch a possible decision boundary for the classification problem presented. 
B. Compute the synaptic weight vector corresponding to the decision boundary you 

sketched in part A for a specified neural threshold.  
C. Sketch the perceptron circuit with synaptic weights labeled.  

 
Some classification problems cannot be solved by a single layer perceptron. 
For this type of problem we expect you to: 
 

D. Be able to explain why this is the case. 
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E. Be able to construct a network that combines two single layer perceptrons to solve 
this problem. 

 
Exercise: 
 
Design a two-layer perceptron that performs the XOR operation specified by the 
following truth table: 
 

 
 
 
Assume that the neurons have a threshold of 0.5.  
 
 
2. Feed-forward linear neural networks 
 

A. Be able to write down a matrix that perform the following operations for data in a 
2-dimensional space: 
 

i. Rotations through the origin for any arbitrary specified angle. 
ii. Stretch or compression along the x or y axes for any arbitrary stretch or 

compression factor. 
 

B. Be able to combine the above matrices to obtain stretches and/or compressions 
along any direction. 

C.  Be able to construct a feed-forward neural network that carries out the above 
matrix operations. 

 
Exercise: 

1) Design a feed-forward linear neural network to implement a 60-degree clockwise 
rotation in two dimensions. Write down the weights connectivity matrix W and 
sketch the network indicating input neurons, output neurons, synaptic connections 
and weights. 

2) A cloud of points in the x-y plane is linearly transformed via matrix 
multiplication. Construct a matrix M in two dimensions that stretches the cloud by 
a factor of 5 along a line 60º from horizontal. The figure below shows the 
untransformed set of points and the stretch direction. 

 



9.40 Introduction to Neural Computation  Final Exam Study Guide 

	 3 

 
 
 
3. Principal Components Analysis 
 
A fundamental problem in neurobiology is how the defining aspects of a stimulus, such 
as its quality, quantity, and temporal structure, are encoded by the activity of sensory 
receptors. The problem is particularly intriguing in the case of olfactory stimuli, which 
are not related according to a single, continuous function such as wavelength or 
frequency. Odorants, rather, have discrete molecular structures and differ with respect to 
a variety of physicochemical properties. Moreover, the natural odors that an olfactory 
system must encode are generally complex mixtures of varying concentration and 
duration. 
 
Odorant receptors are transmembrane proteins encoded by large gene families. The fruit 
fly Drosophila has a highly diverse family of 60 odorant receptor genes which are 
primarily expressed at the olfactory receptor neurons (ORNs). ORNs that express the 
same odorant receptor project to the same glomerulus, or functional processing unit, in 
the antennal lobes (one of the two primary olfactory organs in flies). 
 
A group of researchers examined the antennal odorant receptors of Drosophila using a 
mutant antennal neuron that lacks endogenous odorant receptors, an in vivo expression 
system called ‘‘the empty neuron’’. Individual receptors were expressed one at a time in 
the empty neuron, and odorant responses were assayed electrophysiologically by 
measuring the number of spikes fired during odorant presentation.  In this study, 24 
odorant receptors were included, and were each tested with 150 different odorants. The 
odorants encompassed 5 different chemical families (alcohols, aldehydes, terpenes, 
amines, esters) that were chosen to represent a broad range of ecologically relevant odors. 
 
After the experiment, the researchers performed PCA to test the idea that a few 
components would allow them to cluster the responses by odorant chemical family. To do 
this, they constructed a matrix X, suitable for doing PCA, with the response of each 
odorant to each odor. 
 
	

 60
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A. Make a sketch of matrix X, and label what the rows and columns of this matrix 
represent. Also, indicate the dimensions of matrix X.  

B. Write a recipe (i.e. a step by step prescription/algorithm) to perform PCA on this 
data set. For each step on your recipe: 
 

a. Write one sentence explaining what the step is doing. 
b. Write either a matrix operation or a line of MATLAB code that 

implements the step.  
 
After performing PCA, it turns out that the largest 2 PC’s explain roughly 80% of the 
total variance in the data. The other components are not informative. 
   

C. How do you determine the percentage of variance explained by each principal 
component? How do you plot the eigenvalue ‘spectrum’? 

D. Write down the necessary matrix operation to rotate the data set into the space 
spanned by the first 2 largest principal components. 

E. How would you interpret the following plot of the data in the space of PC1 vs. 
PC2? 

 
 
Additional exercise: 

You will use Principal Components Analysis to find the vector along which the 
following data points exhibit maximum variance: {(0,0), (0.5,1.5), (1.5,0.5), (2,2)}. 
We can write the points in matrix notation as: 
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A. Find the mean vector for this data set, and write out the mean-subtracted data 
matrix Z. 

B. Sketch in the x-y plane the mean-subtracted data points. 
C. Write down the covariance matrix as an expression involving the matrix Z. 

Compute the elements of this matrix numerically using the data points above. 
D. Calculate (or guess) the eigenvectors of this matrix. Write them as unit vectors. 

Compute the eigenvalues of the covariance matrix. Show that the eigenvector 
equations are satisfied. Write the eigenvectors as a change of basis matrix .  

E. What do the eigenvalues of the covariance matrix represent? 
F. Write the matrix expression to project the mean subtracted data points (Z) onto 

the basis set of the eigenvectors.  
G. Sketch the data points in the new basis set. 

 
 
 
 
 
 
4. Linear recurrent neural networks 
 
Consider the symmetric recurrent neural network diagrammed below. The two neurons 
are linear and the intrinsic time-constant of each neuron is =100 msec. The autapses 
are inhibitory with weight -0.1. The recurrent excitatory connections have weight 1.1. 
The firing rates of the neurons are given by v1 and v2.  
 

 
A. Write down the weight matrix M.  
B. The eigenvectors of the recurrent connection matrix M can be written as: 

 
 

 

 
Find the eigenvalue of M associated with each eigenvector and show that the 
these eigenvalues solve the eigenvalue equation. 
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C. For each mode (c1 and c2) write down a differential equation describing the 
response of mode activity to an input vector . 

D. What is the time constant of each mode if the intrinsic time constant is 100 msec? 
E. We present to this network the following input: 

 

 

 
i) Plot the vector	 	in the h1-h2 plane. On the same axes, indicate the 

directions of the eigenvectors . 
ii) What are the firing rates of each mode to this input 5 seconds after the 

stimulus is turned off (t = 10 sec)? Assume that the initial firing rates are zero.  
iii) What is the steady state of this network (i.e. the firing rates, v1 and v2, of the 

output neurons). 5 seconds after the stimulus is turned off (t = 10 sec)? 
Assume that the initial firing rates are zero.  

F. Now consider the following input: 
 

 

 
 

i) Plot the vector	 	in the h1-h2 plane. On the same axes, indicate the 

directions of the eigenvectors . 
ii) Sketch qualitatively the activities of mode 1 and as a function of time during 

an interval from t = -5 to t = 10 seconds. Assume that the initial firing rates 
are 0. Label your axes.  

iii) What are the activities of mode 1 and mode 2 (in Hz) at t=10 seconds, i.e. 5 
seconds after the input is turned off? Assume that the initial firing rates are 
zero. Please provide a numerical answer to the nearest 0.1Hz. 

iv) What are the firing rates (v1, and v2) of the output neurons at this time (t = 
10sec)? Remember that we defined the mode activities (c1 and c2) as a 
function of the neural firing rate vector (v1, v2) as follows: 
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5. Topics from previous midterm exams. 
 
As outlined on the syllabus there will be two questions on the final exam covering topics 
from the previous midterm exams. Each of these questions is worth 10% of the final 
exam score. 
 
The first question will be based on the Hodgkin-Huxley model for action potential 
generation. 
 
The second question will cover: Fourier transforms and the convolution theorem. 
 
Please review the corresponding lecture materials and the study guides to be well 
prepared for these questions. 
 
 
Problem 4, numerical answers: 
 

A.   

B.   
D. . Mode 1 does not have a time constant (integrator). 

E.   ii)    

iii)   

F.   iii)   

iv)   
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