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Abstract 

XML is fast emerging as the dominant standard 
for representing data in the World Wide Web. 
Sophisticated query engines that allow users to 
effectively tap the data stored in XML 
documents will be crucial to exploiting the full 
power of XML. While there has been a great deal 
of activity recently proposing new semi-
structured data models and query languages for 
this purpose, this paper explores the more 
conservative approach of using traditional 
relational database engines for processing XML 
documents conforming to Document Type 
Descriptors (DTDs). To this end, we have 
developed algorithms and implemented a 
prototype system that converts XML documents 
to relational tuples, translates semi-structured 
queries over XML documents to SQL queries 
over tables, and converts the results to XML. We 
have qualitatively evaluated this approach using 
several real DTDs drawn from diverse domains. 
It turns out that the relational approach can 
handle most (but not all) of the semantics of 
semi-structured queries over XML data, but is 
likely to be effective only in some cases. We 
identify the causes for these limitations and 
propose certain extensions to the relational 
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model that would make it more appropriate for 
processing queries over XML documents. 

1. Introduction 

Extensible Markup Language (XML) is fast emerging as 
the dominant standard for representing data on the 
Internet. Like HTML, XML is a subset of SGML. 
However, whereas HTML tags serve the primary purpose 
of describing how to display a data item, XML tags 
describe the data itself. The importance of this simple 
distinction cannot be underestimated – because XML data 
is self-describing, it is possible for programs to interpret 
the data. This means that a program receiving an XML 
document can interpret it in multiple ways, can filter the 
document based upon its content, can restructure it to suit 
the application’s needs, and so forth. 

The initial impetus for XML may have been primarily 
to enhance this ability of remote applications to interpret 
and operate on documents fetched over the Internet. 
However, from a database point of view, XML raises a 
different exciting possibility: with data stored in XML 
documents, it should be possible to query the contents of 
these documents. One should be able to issue queries over 
sets of XML documents to extract, synthesize, and 
analyze their contents. But what is the best way to provide 
this query capability over XML documents? 

At first glance the answer is obvious. Since an XML 
document is an example of a semi-structured data set (it is 
tree-structured, with each node in the tree described by a 
label), why not use semi-structured query languages and 
query evaluation techniques? This is indeed a viable 
approach, and there is considerable activity in the semi-
structured data community focussed upon exploiting this 
approach [5,14]. While semi-structured techniques will 
clearly work, in this paper we ask the question of whether 
this is the only or the best approach to take. The downside 
of using semi-structured techniques is that this approach 
turns its back on 20 years of work invested in relational 
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database technology. Is it really the case that we cannot 
use relational technology, and must start afresh with new 
techniques? Or can we leverage relational technology to 
provide query capability over XML documents? 

In this paper we demonstrate that it is indeed possible 
to use standard commercial relational database systems to 
evaluate powerful queries over XML documents. The key 
that makes this possible is the existence of Document 
Type Descriptors (DTDs) [2] (or an equivalent, such as 
DCDs [4] or XML Schemas [16]). A DTD is in effect a 
schema for a set of XML documents. Without DTDs or 
their equivalent, XML will never reach its full potential, 
because a tagged document is not very useful without 
some agreement among inter-operating applications as to 
what the tags mean. Put another way, the reason the 
Internet community is so excited about XML is that there 
is the vision of a future in which the vast majority of files 
on the web are XML files conforming to DTDs. An 
application encountering such a file can interpret the file 
by consulting the DTDs to which the document conforms. 

Our approach to querying XML documents is the 
following. First, we process a DTD to generate a 
relational schema. Second, we parse XML documents 
conforming to DTDs and load them into tuples of 
relational tables in a standard commercial DBMS (in our 
case, IBM DB2). Third, we translate semi-structured 
queries (specified in a language similar to XML-QL [9] or 
Lorel [1]) over XML documents into SQL queries over 
the corresponding relational data. Finally, we convert the 
results back to XML. 

The good news is that this works. A main contribution 
of this paper is the description of an approach that enables 
one to take the XML queries, data sets, and schemas so 
foreign to the relational world and process them in 
relational systems without any manual intervention. This 
means that we are presented with a large opportunity: all 
of the power of relational database systems can be 
brought to bear upon the XML query problem. 

However, the fact that something is possible does not 
necessarily imply that it is a good idea. Our experience 
with implementing this system and using it with over 30 
different XML DTDs has revealed that there are a number 
of limitations in current relational database systems that in 
some instances make using relational technology for 
XML queries either awkward or inefficient. Relational 
technology proves awkward for queries that require 
complex XML constructs in their results, and may be 
inefficient when fragmentation due to the handling of set-
valued attributes and sharing causes too many joins in the 
evaluation of simple queries. Another contribution of this 
paper is the identification of those limitations, and a 
discussion of how they might be removed. It is an open 
question at this point whether the best approach is to start 
with relational technology and try to remove those 
limitations, or to start with a semi-structured system and 
try to add the power and sophistication currently found in 
relational query processing systems. 

1.1	 Related Work 

There has been a lot of work developing special purpose 
query engines for semi-structured data [5,14]. Many of 
the abstracts submitted to the XML query languages 
workshop use this approach [18]. Our goal in this paper, 
however, is to investigate the use of relational database 
systems to process queries on semi-structured documents. 
In this sense, our work is similar to the work on STORED 
[10]. However, our approach differs in important ways. 
The STORED approach uses a combination of relational 
and semi-structured techniques to process any semi-
structured documents. We begin with the assumption that 
the document conforms to a schema and store the 
document entirely within the relational system. Further, 
we handle recursive queries, address the issue of 
constructing the result in XML and evaluate the relational 
approach using real DTDs. 

Oracle 8i provides some basic support for querying 
XML documents using a relational engine [17]. However, 
the translation from document schemas to relational 
schemas is manual and not automatic as in our approach. 
In addition, Oracle 8i does not provide support for semi-
structured queries over XML documents and provides 
only primitive support for converting results to XML. 

There has also been work on processing SGML data 
using an OODBMS [6]. The conclusion was that this is 
feasible with some extensions to OO query languages. 
Our work considers a more restricted set of documents 
(XML, rather than SGML) and considers mapping to the 
relational model, rather than a general OO model. 

Our method of eliminating wild cards and alternations 
in path expression queries to enable processing by a 
relational engine bears some similarities to the work on 
compile time optimization of path expressions in semi-
structured query engines [12,15]. Our different focus, 
however, results in modified techniques. 

1.2 Roadmap 

The rest of the paper is organized as follows. Section 2 
gives an overview of XML documents, schemas and 
query languages. The algorithms for translating DTDs and 
XML documents to a relational format and an evaluation 
of the algorithms using real DTDs are given in Section 3. 
Section 4 describes the translation of queries over XML 
documents to SQL queries. Section 5 deals with the 
conversion of the results to XML. Section 6 concludes by 
proposing extensions to the relational model that will 
make it more suitable for processing XML documents. 

2.	 Overview of XML, XML Schemas and 
XML Query Languages 

In this section, we give a very brief overview of XML, 
XML schemas and XML query languages. Further details 
can be obtained from the references. 



2.1 Extensible Markup Langua ge 

Extensible Markup Language (XML) is a hierarchical 
data format for information exchange in the World Wide 
Web. An XML document consists of nested element 
structures, starting with a root element. Element data can 
be in the form of attributes or sub-elements. Figure 1 
shows an XML document that contains information about 
a book. In this example, there is a book element that has 
two sub-elements, booktitle and author. The author 
element has an id attribute with value “dawkins” and is 
further nested to provide name and address information. 
Further information on XML can be found in [3,8]. 

<book> 
<booktitle> The Selfish Gene </booktitle> 
<author id = “dawkins”> 

<name> 
<firstname> Richard </firstname> 
<lastname> Dawkins </lastname> 

</name> 
<address> 

<city> Timbuktu </city> 
<zip> 99999 </zip> 

</address> 
</author> 

</book> 

Figure 1 

<!ELEMENT book (booktitle, author)


<!ELEMENT article (title, author*, contactauthor)>


<!ELEMENT contactauthor EMPTY>


<!ATTLIST contactauthor authorID IDREF IMPLIED>


<!ELEMENT monograph (title, author, editor)>


<!ELEMENT editor (monograph*)>


<!ATTLIST editor name CDATA #REQUIRED>


<!ELEMENT author (name, address)>


<!ATTLIST author id ID #REQUIRED>


<!ELEMENT name (firstname?, lastname)>


<!ELEMENT firstname (#PCDATA)>


<!ELEMENT lastname (#PCDATA)>


<!ELEMENT address ANY>


Figure 2 

2.2 DTDs and other XML Sche mas 

Document Type Descriptors (DTDs) [2] describe the 
structure of XML documents and are like a schema for 
XML documents. A DTD specifies the structure of an 
XML element by specifying the names of its sub-elements 
and attributes. Sub-element structure is specified using the 
operators * (set with zero or more elements), + (set with 

one or more elements), ? (optional), and | (or). All values 
are assumed to be string values, unless the type is ANY in 
which case the value can be an arbitrary XML fragment. 
There is a special attribute, id, which can occur once for 
each element. The id attribute uniquely identifies an 
element within a document and can be referenced through 
an IDREF field in another element. IDREFs are untyped. 
Finally, there is no concept of a root of a DTD – an XML 
document conforming to a DTD can be rooted at any 
element specified in the DTD. Figure 2 shows a DTD 
specification, while Figure 1 gives an XML document that 
conforms to this DTD. 

Document Content Descriptors (DCDs) [4] and XML 
Schemas [16] are extensions to DTDs. For our purposes, 
the main difference between these and DTDs is that they 
allow typing of values and set size specification. If DCDs 
and XML Schemas become standard, the additional 
information would aid in our translation process; for 
example, we could create tables with integer attributes 
where appropriate instead of using just strings. The types 
in the current DCD proposal are compatible with types 
supported by current relational systems. More complex 
types will require object-relational extensions. 

2.3 XML Query Languages 

SELECT X.author.lastname 
FROM book X 
WHERE X.booktitle = “The Selfish Gene” 

Figure 3 

WHERE <book> 
<booktitle> The Selfish Gene </booktitle> 
<author> 

<lastname> $l </lastname> 
</> 

</> IN a.xml, b.xml 
CONSTRUCT <lastname> $l </lastname> 

Figure 4 

There are many semi-structured query languages that can 
be used to query XML documents, including XML-QL 
[9], Lorel [1], UnQL [5] and XQL (from Microsoft). All 
these query languages have a notion of path expressions 
for navigating the nested structure of XML. XML-QL 
uses a nested XML-like structure to specify the part of a 
document to be selected and the structure of the result 
XML document. 

Figure 4 shows an XML-QL query to determine the 
last name of an author of a book having title “The Selfish 
Gene”, specified over a set of XML documents 
conforming to the DTD in Figure 2. The last names thus 
selected will be nested within a lastname tag, as specified 
in the construct clause of the query. Lorel is more like 
SQL and its representation of the same query is shown in 
Figure 3. In this paper, we use a combination of XML-QL 
and Lorel (modified appropriately for our purposes). 



3.	 Storing XML Documents in a Relational 
Database System 

In this section, we describe how to generate relational 
schemas from XML DTDs. The main issues that must be 
addressed include (a) dealing with the complexity of DTD 
element specifications (b) resolving the conflict between 
the two-level nature of relational schemas (table and 
attribute) vs. the arbitrary nesting of XML DTD schemas 
and (c) dealing with set-valued attributes and recursion. 

3.1	 Simplifying DTDs 

In general, DTDs can be complex and generating 
relational schemas that capture this complexity would be 
unwieldy at best. Fortunately, one can simplify the details 
of a DTD and still generate a relational schema that can 
store and query documents conforming to that DTD. 
Note that it is not necessary to be able to regenerate a 
DTD from the generated relational schema. Rather, what 
is required is that (a) any document conforming to the 
DTD can be stored in the relational schema, and (b) any 
XML semi-structured query over a document conforming 
to the DTD can be evaluated over the relational database 
instance. 

Most of the complexity of DTDs stems from the 
complex specification of the type of an element. For 
instance, we could specify an element a as <!ELEMENT 
a ((b|c|e)?,(e?|(f?,(b,b)*))*)>, where b, c, e and f are other 
elements. However, at the query language level, all that 
matters is the position of an element in the XML 
document, relative to its siblings and the parent-child 
relationship between elements in the XML document. We 
now propose a set of transformations that can be used to 
“simplify” any arbitrary DTD without undermining the 
effectiveness of queries over documents conforming to 
that DTD. These transformations are a superset of similar 
transformations presented in [10]. 

e1** � e1* (e1, e2)* � e1*, e2* e1*? � e1* (e1, e2)? � e1?, e2? e1?* � e1* (e1|e2) � e1?, e2? e1?? � e1? 

Figure 5 Figure 6 

..., a*, ..., a*, ... � a*, ... 

..., a*, ..., a?, ... � a*, ... 

..., a?, ..., a*, ... � a*, ... 

..., a?, ..., a?, ... � a*, … 
…, a, …, a, … � a*, … 

Figure 7 
The transformations are of three types: (a) flattening 

transformations which convert a nested definition into a 
flat representation (i.e., one in which the binary operators 
“,” and “|” do not appear inside any operator – see Figure 
5) (b) simplification transformations, which reduce many 
unary operators to a single unary operator (Figure 6) and 

(c) grouping transformations that group sub-elements 
having the same name (for example, two a* sub-elements 
are grouped into one a* sub-element - see Figure 7). In 
addition, all “+” operators are transformed to “*” 
operators. Our example specification would be 
transformed to: <!ELEMENT a (b*, c?, e*, f*)>. 

The transformations preserve the semantics of (a) one 
or many and (b) null or not null. The astute reader may 
notice that we have lost some information about relative 
orders of the elements. This is true; fortunately, this 
information can be captured when a specific XML 
document is loaded into this relational schema (e.g., by 
position fields in the tuples representing some of the 
elements.) We now explore techniques for converting a 
simplified DTD to a relational schema. 

3.2	 Motivation for Special Sche ma Conversion 
Techniques 

Traditionally, relational schemas have been derived from 
a data model such as the Entity-Relationship model. This 
translation is straightforward because there is a clear 
separation between entities and their attributes. Each 
entity and its attributes are mapped to a relation. 

When converting an XML DTD to relations, it is 
tempting to map each element in the DTD to a relation 
and map the attributes of the element to attributes of the 
relation. However, there is no correspondence between 
elements and attributes of DTDs and entities and 
attributes of the ER-Model. What would be considered 
“attributes” in an ER-Model are often most naturally 
represented as elements in a DTD. Figure 2 shows a 
DTD that illustrates this point. In an ER-Model, author 
would be an “entity” and firstname, lastname and address 
would be attributes of that entity. In designing a DTD, 
there is no incentive to make author an element and 
firstname, lastname and address attributes. In fact, in 
XML, if firstname and lastname were attributes, they 
could not be nested under name because XML attributes 
cannot have a nested structure. Directly mapping elements 
to relations is thus likely to lead to excessive 
fragmentation of the document. 

3.3	 The Basic Inlining Techniq ue 

The Basic Inlining Technique, hereafter referred to as 
Basic, solves the fragmentation problem by inlining as 
many descendants of an element as possible into a single 
relation. However, Basic creates relations for every 
element because an XML document can be rooted at any 
element in a DTD. For example, the author element in 
Figure 2 would be mapped to a relation with attributes 
firstname, lastname and address. In addition, relations 
would be created for firstname, lastname and address. 

We must address two complications: set-valued 
attributes and recursion. In the example DTD in Figure 2, 
when creating a relation for article, we cannot inline the 
set of authors because the traditional relational model 



does not support set-valued attributes. Rather, we follow 
the standard technique for storing sets in an RDBMS and 
create a relation for author and link authors to articles 
using a foreign key. Just using inlining (if we want the 
process to terminate) necessarily limits the level of 
nesting in the recursion. Therefore, we express the 
recursive relationship using the notion of relational keys 
and use relational recursive processing to retrieve the 
relationship. In order to do this in a general fashion, we 
introduce the notion of a DTD graph. 

book 

author 

title 

contactauthor 

authorID 

editor 

*

? 

* 

name 

article monograph 

booktitle 

name 
address authorid 

? 

firstname lastname 

Figure 8 

editor 

* name 

monograph 

title 

author 

name address authorid 

? 

firstname lastname 

Figure 9 
A DTD graph represents the structure of a DTD. Its 

nodes are elements, attributes and operators in the DTD. 
Each element appears exactly once in the graph, while 
attributes and operators appear as many times as they 
appear in the DTD. The DTD graph corresponding to the 
DTD in Figure 2 is given in Figure 8. Cycles in the DTD 
graph indicate the presence of recursion. 

The schema created for a DTD is the union of the sets 
of relations created for each element. In order to 
determine the set of relations to be created for a particular 
element, we create a graph structure called the element 
graph. The element graph is constructed as follows. 

Do a depth first traversal of the DTD graph, starting at 
the element node for which we are constructing relations. 

Each node is marked as “visited” the first time it is 
reached and is unmarked it once all its children have been 
traversed. 

If an unmarked node in the DTD graph is reached 
during depth first traversal, a new node bearing the same 
name is created in the element graph. In addition, a 
regular edge is created from the most recently created 
node in the element graph with the same name as the DFS 
parent of the current DTD node to the newly created node. 

If an attempt is made to traverse an already marked 
DTD node, then a backpointer edge is added from the 
most recently created node in the element graph to the 
most recently created node in the element graph with the 
same name as the marked DTD node. 

The element graph for the editor element in the DTD 
graph in Figure 8 is shown in Figure 9. Intuitively, the 
element graph expands the relevant part of the DTD graph 
into a tree structure. 

Given an element graph, relations are created as 
follows. A relation is created for the root element of the 
graph. All the element’s descendents are inlined into that 
relation with the following two exceptions: (a) children 
directly below a “*” node are made into separate relations 
– this corresponds to creating a new relation for a set-
valued child; and (b) each node having a backpointer edge 
pointing to it is made into a separate relation – this 
corresponds to creating a new relation to handle recursion. 
Figure 10 shows the relational schema that would be 
generated for the DTD in Figure 2. There are several 
features to note in the schema. Attributes in the relations 
are named by the path from the root element of the 
relation. Each relation has an ID field that serves as the 
key of that relation. All relations corresponding to 
element nodes having a parent also have a parentID field 
that serves as a foreign key. For instance, the 
article.author relation has a foreign key 
article.author.parentID that joins authors with articles. 
The XML document in Figure 1 would be converted to 
the following tuple in the book relation: 

(1, The Selfish Gene, Richard, Dawkins, 
<city>Timbuktu</city><zip>99999</zip>, dawkins) 

The ANY field, address, is stored as an uninterpreted 
string; thus the nested structure is not visible to the 
database system without further support for XML (see 
Section 6). Note that if the author Richard Dawkins has 
authored many books, then the author information will be 
replicated for each book because it is replicated in the 
corresponding XML documents. 

While Basic is good for certain types of queries, such 
as “list all authors of books”, it is likely to be grossly 
inefficient for other queries. For example, queries such as 
“list all authors having first name Jack” will have to be 
executed as the union of 5 separate queries. Another 
disadvantage of Basic is the large number of relations it 
creates. Our next technique attempts to resolve these 
problems. 



book (bookID: integer, book.booktitle : string, book.author.name.firstname: string, book.author.name.lastname: string, 
book.author.address: string, author.authorid: string) 

booktitle (booktitleID: integer, booktitle: string) 

article (articleID: integer, article.contactauthor.authorid: string, article.title: string) 

article.author (article.authorID: integer, article.author.parentID: integer, article.author.name.firstname: string, 
article.author.name.lastname: string, article.author.address: string, article.author.authorid: string) 

contactauthor (contactauthorID: integer, contactauthor.authorid: string) 

title (titleID: integer, title: string) 

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string, 
monograph.author.name.firstname: string, monograph.author.name.lastname: string, 
monograph.author.address: string, monograph.author.authorid: string) 

editor (editorID: integer, editor.parentID: integer, editor.name: string) 

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string, 
editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string, 
editor.monograph.author.address: string, editor.monograph.author.authorid: string) 

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string, 
author.authorid: string) 

name (nameID: integer, name.firstname: string, name.lastname: string) 

firstname (firstnameID: integer, firstname: string) 

lastname (lastnameID: integer, lastname: string) 

address (addressID: integer, address: string) 

Figure 10 

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string)


article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string)


monograph (monographID: integer,monograph.parentID: integer, monograph.parentCODE: integer,

monograph.editor.isroot: boolean, monograph.editor.name: string) 

title (titleID: integer, title.parentID: integer, title.parentCODE: integer, title: string) 

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean, 
author.name.firstname.isroot: :boolean, author.name.firstname: string, author.name.lastname.isroot: boolean, 
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string) 

Figure 11 

3.4 The Shared Inlining Technique 

The Shared Inlining Technique, hereafter referred to as 
Shared, attempts to avoid the drawbacks of Basic by 
ensuring that an element node is represented in exactly 
one relation. The principal idea behind Shared is to 
identify the element nodes that are represented in multiple 
relations in Basic (such as the firstname, lastname and 
address elements in the example) and to share them by 
creating separate relations for these elements. 

We must first decide what relations to create. In 
Shared, relations are created for all elements in the DTD 
graph whose nodes have an in-degree greater than one. 
These are precisely the nodes that are represented as 
multiple relations in Basic. Nodes with an in-degree of 
one are inlined. Element nodes having an in-degree of 
zero are also made separate relations, because they are not 
reachable from any other node. As in Basic, elements 
below a “*” node are made into separate relations. 
Finally, of the mutually recursive elements all having in-
degree one (such as monograph and editor in Figure 8), 

one of them is made a separate relation. We can find such 
mutually recursive elements by looking for strongly 
connected components in the DTD graph. 

Once we decide which element nodes are to be made 
into separate relations, it is relatively easy to construct the 
relational schema. Each element node X that is a separate 
relation inlines all the nodes Y that are reachable from it 
such that the path from X to Y does not contain a node 
(other than X) that is to be made a separate relation. 
Figure 11 shows the schema derived from the DTD graph 
of Figure 8. One striking feature is the small number of 
relations compared to the Basic schema (Figure 10). 

Inlining an element X into a relation corresponding to 
another element Y creates problems when an XML 
document is rooted at the element X. To facilitate queries 
on such elements we make use of isRoot fields. 

The element sharing in Shared has query processing 
implications. For example, a selection query over all 
authors accesses only one relation in Shared compared to 
five relations in Basic. Despite the fact that Shared 
addresses some of the shortcomings and shares some of 



book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string, author.name.firstname: string, 
author.name.lastname: string, author.address: string, author.authorid: string) 

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string, 
article.title.isroot: boolean, article.title: string) 

monograph (monographID: integer, monograph.parentID: integer, monograph.parentCODE: integer, 
monograph.title: string, monograph.editor.isroot: boolean, monograph.editor.name: string, 
author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string) 

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean, 
author.name.firstname.isroot: boolean, author.name.firstname: string, author.name.lastname.isroot: boolean, 
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string) 

Figure 12 

the	 strengths of Basic, Basic performs better in one 
important respect – reducing the number of joins starting 
at a particular element node. Thus we explore a hybrid 
approach that combines the join reduction properties of 
Basic with the sharing features of Shared 

3.5	 The Hybrid Inlining Technique 

The Hybrid Inlining Technique, or Hybrid, is the same as 
Shared except that it inlines some elements that are not 
inlined in Shared. In particular, Hybrid additionally 
inlines elements with in-degree greater than one that are 
not recursive or reached through a “*” node. Set sub-
elements and recursive elements are treated as in Shared. 
Figure 12 shows the relational schema generated using 
this hybrid approach. Note how this schema combines 
features of both Basic and Shared – author is inlined with 
book and monograph even though it is shared, while 
monograph and editor are represented exactly once. 

So far, we have implicitly assumed that the data model 
is unordered, i.e., the position of an element does not 
matter. Order could, however, be easily incorporated into 
our framework by storing a position field for each 
element. 

3.6	 A Qualitative Evaluation of the Basic, Shared 
and Hybrid Techniques 

In this section we qualitatively evaluate our relation-
conversion algorithms using 37 DTDs available from 
Robin Cover's SGML/XML Web page [8]. We did not 
pose any criterion for selecting DTDs except for 
availability for easy download and validity. Some DTDs 
were excluded because they did not pass our XML parser, 
the IBM alphaWorks xml4j. 

3.6.1 Evaluation Metric 

Our major concern in evaluating the algorithms is the 
efficiency of query processing. Our metric is the average 
number of SQL joins required to process path expressions 
of a certain length N. We use this metric because path 
expressions are at the heart of query languages proposed 
for semi-structured data. We are particularly concerned 

about path expressions because we use a relational 
database which uses joins to process path expressions. 

This subsection logically contains “forward 
references” to Section 4, in which we describe how SQL 
queries are generated from semi-structured XML queries. 
However, the only point from Section 4 that is necessary 
to understand the results here is that a single semi-
structured query could give rise to a union of several SQL 
queries, and that each of these queries may contain some 
number of joins. The use of Basic vs. Shared vs. Hybrid 
determines how many queries are generated, and how 
many joins are found in each query. Although Basic and 
Hybrid reduce the number of joins per SQL query, their 
higher degree of inlining could cause more SQL queries 
to be generated. For each algorithm, each DTD, and a 
variable number of path lengths, we make the following 
measurements: 

•	 The average number of SQL queries generated for 
path expressions of length N. 

•	 The average number of joins in each SQL query 
for path expressions of length N. 

•	 The total average number of joins in order to 
process path expressions of length N (the product 
of the two previous measurements.) 

In Sections 3.6.2 and 3.6.3, we assume that path 
expressions start from an arbitrary element in the DTD. 
We relax this assumption in Section 3.6.4. 

3.6.2	 Evaluation Results for Expression Paths of 
Length 3 

In this section we show the results for path expressions of 
length 3, which is the longest path length applicable to all 
37 DTDs. We shall examine the results for other path 
lengths in the next section. In the interest of space, we 
show the results only for a subset of the DTDs and 
summarize the others. 

First we consider whether the Basic approach is 
practical. For 11 of our 37 DTDs, Basic did not run to 
completion because it ran out of virtual memory. The 
reason for this is that Basic generates huge numbers of 
relations if DTDs have large strongly connected 
components. We can see this effect clearly on some of 
the DTDs that Basic did run to completion. One 19 node 
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DTD has a SCC size of 4, and the number of relations 
created is 204 times as many as created by Hybrid, 
totalling 3462 relations. Due to this severe limitation of 
Basic, we concentrate on the comparisons between 
Shared and Hybrid. 

produces at least the number of SQL queries as Shared. 
Figure 15 shows the total number of joins. 

Using the average total number of joins required to 
process path expressions of length 3, we can roughly 
categorize the 37 DTDs into four groups: 

Group 1. DTDs for which Hybrid reduces a large 
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Shared Hybrid percentage of joins per SQL query but incurs a smaller 
increase in the number of SQL queries. The net result is 
Hybrid requires fewer joins than Shared. Example: DTD 
“ofx1516”. 

Group 2. DTDs for which Hybrid reduces a large 
percentage of joins per SQL query and incurs a 
comparable increase in the number of SQL queries. The 
total number of joins is about the same. Example: DTD 
“vrml”. 

Group 3. DTDs for which Hybrid reduces some joins 
per SQL query, but not enough to offset the increase in 
the number of SQL queries; therefore Hybrid generates 

Figure 13 more joins for a path expression than Shared. Example: 
DTD “saej”. 

Group 4. DTDs for which both Shared and Hybrid 
produce about the same number of joins per SQL query, 
and about the same number of SQL queries, resulting in 
approximately the same total number of joins. Example: 
DTD “math”. 

Hybrid inlines more than Shared in Groups 1, 2 and 3. 
This reduces the number of joins per SQL query but 
increases the number of SQL queries. The net increase or 
decrease in the total number of joins depends on the 
structure of the DTD. In Group 4, most of the shared 
nodes are either set nodes or involved in recursion. Since 
Shared and Hybrid treat set nodes and recursive nodes 

2 
1.8 
1.6 
1.4 
1.2 

1 
0.8 
0.6 
0.4 
0.2 

0 

Shared Hybrid 

T
ot

al
 J

oi
ns

 
Q

ue
rie

s 

Figure 14 identically, there is no significant difference in their 
performance in Group 4. Shared Hybrid 

Group 1 Group 2 Group 3 Group 4 
Num 
DTDs 

13 2 6 16 

2.5 

2 

1.5 

1 

0.5 The number of DTDs in each group from all 37 DTDs 
0 is summarized in the table above. We can infer that in a 

large number of DTDs (Group 4), most of the shared 
nodes are either set nodes or recursive nodes. 

3.6.3 Results for Path Expressions of Other Lengths 
Figure 15 

Figures 13, 14 and 15 show results for 10 of the 
DTDs. As shown in Figure 13, Hybrid eliminates a large 
number of joins for some DTDs, whereas for others, 
Hybrid and Shared produce about the same number of 
joins. Figure 14 shows that for some DTDs, querying over 
3-length path expressions using Hybrid requires more 
SQL queries than using Shared, while for other DTDs, the 
number of SQL queries is the same. Note that for any path 
expression, Shared always produces at least the number of 
joins per SQL query as Hybrid, and Hybrid always 

In the previous section, we showed the results for path 
expressions of length 3. In order to see how the results 
carry over to other path lengths, let us examine how the 
number of joins scales with the path length. We found 
that for almost all the DTDs, the number of joins scales 
linearly with the path length, the only difference is the 
scaling factor, which is determined by the structure of the 
DTD. Furthermore, the gap between the performance of 
Shared and Hybrid typically widens when the path 
lengthens. Figure 16 and Figure 17 show the scaling for 
two DTDs in group 1 and group 3 respectively. 



0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 2 3 4 5 6 7 8 9 10 11 

Path Length 

T
ot

al
 J

oi
ns

 

Shared Hybrid 

Figure 16 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 2 3 4 5 6 7 8 9 10 11 
Path Length 

T
ot

al
 J

oi
ns

 

Shared Hybrid 

Figure 17 

3.6.4	 Evaluation Using Path Expressions Starting 
From the Document Root 

So far, we have examined the performance of our 
algorithms assuming path expressions start from an 
arbitrary node in the DTD graph. What is different if the 
path expressions start from the root of a document? The 
real difference is in the total number of joins. A path 
expression starting from the root of a document is always 
converted to one SQL query - therefore the total number 
of joins is equivalent to the number of joins per SQL 
query. Since the Hybrid algorithm always produces fewer 
joins per SQL query, it is always better than Shared for 
path expressions that start from the document root. 

For DTDs in groups 3 and 4 (the majority of DTDs), 
both Shared and Hybrid are practically the same. The 
main issue is the excessive fragmentation of the DTDs 
that leads to the number of joins being almost equal to the 
length of the path expression (Figure 17). This is likely to 
be very inefficient in the relational model, especially for 
long path lengths. The main cause of this fragmentation is 
the presence of set sub-elements. Section 6 includes a 
proposed extension to alleviate this problem. 

4.	 Converting Semi-Structured Queries to 
SQL 

Semi-structured query languages have a lot more 
flexibility than SQL. In particular, they allow path 
expressions with various operators and wild cards. The 
challenge is to rewrite these queries in SQL exploiting 
DTD information. In this section, we consider only 
queries with string values as results. Queries with more 
complex result formats are dealt with in Section 5. For 
ease of exposition, we present the translation algorithm 
only in the context of the Shared approach. The 
generalization to the other approaches is straightforward. 

4.1	 Converting Queries with Si mple Path 
Expressions to SQL 

Consider the following XML-QL query, and an 
equivalent Lorel-like query, over the DTD in Figure 2 that 
asks for the first and last name of the author of a book 
with title “The Selfish Gene”. Note that we have slightly 
extended the XML-QL syntax to query over all 
documents conforming to a DTD. 

Select Y.name.firstname, 
Y.name.lastname 

From book X, X.author Y 
Where X.booktitle = “Databases” 

WHERE <book> 
<booktitle> The Selfish Gene </booktitle> 
<author> 

<name> 
<firstname> $f </firstname> 
<lastname> $l </lastname> 

</name> 
</author> 

</book> IN * CONFORMING TO pubs.dtd 
CONSTRUCT <result> $f $l </result> 

As can be seen from the Lorel-like representation, this 
query essentially consists of five path expressions, 
namely, book, X.author, Y.name.firstname, 
Y.name.lastname and X.booktitle. Of these path 
expressions, book is the root path expression and the 
others are dependent path expressions. This query is 
translated into SQL as follows: (a) first, the relation(s) 
corresponding to start of the root path expression(s) are 
identified and added to the from clause of the SQL query, 
then (b) if necessary, the path expressions are translated to 
joins among relations (when elements are inlined, joins 
are not necessary). The SQL query generated in this 
fashion for the example query above is shown in Figure 
18. Note that a join condition has been added to the where 
clause to link the book and author and a selection 
(A.parentCODE = 0, where 0 indicates that the parent of 
the author is a book) is performed on author to make sure 
that only authors reached through book are considered. 



Select A.”author.name.firstname”, 
A.”author.name.lastname” 

From author A, book B 
Where B.bookID = A.parentID 

AND A.parentCODE = 0

AND B.”book.booktitle” = “The Selfish Gene”


Figure 18 

4.2	 Converting Simple Recursive Path Expressions 
to SQL 

Consider the following XML-QL query that requires the 
names of all editors reachable directly or indirectly from 
the monograph with title “Subclass Cirripedia”. The 
corresponding XML-QL query (and an equivalent Lorel­
like query) is shown below: 

WHERE <*.monograph> 
<editor.(monograph.editor)*> 

<name> $n </name> 
</> 
<title> Subclass Cirripedia </title> 

</> IN * CONFORMING TO pubs.dtd 
CONSTRUCT <result> $n </result> 

Select Y.name 
From *.monograph X, X.editor.(monograph.editor)* Y 
Where X.title = “Subclass Cirripedia” 

There are two interesting features about this query. 
The first is the tag “*.monograph” which states that we 
are interested in monographs reachable from any path. 
The second is the tag “editor.(monograph.editor)*” that 
specifies all editors reachable directly or indirectly from a 
monograph. The trick in converting this to a least fix-
point query such as that supported by IBM DB2 is to 
determine (a) the initialization of the recursion and (b) the 
actual recursive path expression. In the example above, 
the initialization of the recursion is the path expression 
*.monograph.editor with the selection condition 
monograph.title = “Subclass Cirripedia” and the recursive 
path expression is monograph.editor. Each can be 
converted to a SQL fragment just like a simple path 
expression. The final query is the union of the two SQL 
fragments within a least fix-point operator. The query 
generated in this fashion is shown in Figure 19, in IBM 
DB2 syntax. Note that the “with clause” is the equivalent 
of the least fix-point operator in DB2. 

With Q1 (monographID, name) AS 
(Select X.monographID, X.”editor.name” 
From monograph X 
Where X.title = “Subclass Cirripedia” 
UNION ALL 
Select Z.monographID, Z.”editor.name” 
From Q1 Y, monograph Z 
Where Y.monographID = Z.parentID AND 

Z.parentCODE = 0 
) 
Select A.name 
From Q1 A 

Figure 19 

4.3	 Converting Arbitrary Path Expressions to 
Simple Recursive Path Expressions 

In general, path expressions can be of arbitrary 
complexity. For example, we could have a query that asks 
for all the name elements reachable directly or indirectly 
through monograph. This would be represented in a 
Lorel-like language as (an equivalent query can be 
expressed in XML-QL): 

Select X 
From monograph.(#)*.name X 

We have a general technique that takes path 
expressions appearing in such queries (in this example 
“monograph.(#)*.name”) and translates them into 
possibly many simple (recursive) path expressions. SQL 
queries are then generated for each simple recursive path 
expression. This notion of splitting a path expression to 
many simple path expressions is crucial to processing 
queries having arbitrary path expressions in SQL. The 
details of the technique are tedious and we omit them here 
in the interest of space. 

Our technique is general enough to handle path 
expressions with nested recursion (e.g., “(a.(b)*.c)*”). 
However, relational database systems such as IBM DB2 
cannot currently handle these queries because they do not 
have support for nested recursive queries. 

5. Converting Relational Results to XML 

In the previous section, we assumed that the results of a 
query were string values. We relax this assumption in this 
section and explore how the tabular results returned by 
SQL queries can be converted to complex structured 
XML documents. This is perhaps the main drawback in 
using current relational technology to provide XML 
querying – constructing arbitrary XML result sets is 
difficult. In this section we give some examples, using 
XML-QL as the illustrative query languages because it 
provides XML structuring constructs. 

5.1 Simple Structuring 

Consider the query in Figure 20 that asks for the first 
name and last name of all the authors of books, nested 
appropriately. Constructing such results from a relational 
system is natural and efficient, since it only requires 
attaching the appropriate tags for each tuple (Figure 21). 

5.2 Tag Variables 

A tag variable is one that ranges over the value of an 
XML tag. Some queries requiring tag variables in their 
results are naturally translated to the relational model. 
Consider the query in Figure 22 that ask for names of 
authors of all publications, nested under a tag specifying 
the type of publication. This can be handled by 
generating a relational query that contains the tag value as 
an element of the result tuple. Then at result generation 



WHERE <book> 
<author> 

<firstname> $f </firstname> 
<lastname> $l </lastname> 

</> 
</> IN * CONFORMS TO pubs.dtd 

CONSTRUCT <author> 
<firstname> $f </firstname> 
<lastname> $l </lastname> 

</author> 

Figure 20 

WHERE <$p> 
<author> 

<firstname> $f </firstname> 
<lastname> $l </lastname> 

</> 
</> IN * CONFORMS TO pubs.dtd 

CONSTRUCT <$p> 
<author> 

<firstname> $f </firstname> 
<lastname> $l </lastname> 

</author> 
</> 

(book, Richard, Dawkins) 
(book, NULL, Darwin) 
(monograph, NULL, Darwin) 

Figure 22 

time, the tag attribute in the result tuple can be converted 
to the appropriate XML tag (Figure 23). 

5.3 Grouping 

Consider the query in Figure 24 that requires all the 
publications of an author (assuming an author is uniquely 
identified by his/her last name) to be grouped together, 
and within this structure, requires the titles of publications 
to be grouped by the type of the publication. The 
relational result from the translation of this query will be a 
set of tuples having fields corresponding to last name of 
author, title of publication and type of publication. 
However, we cannot use the relational group-by operator 
to group by last name and type of publication because the 
SQL group-by semantics implies that we should apply an 
aggregate function to title, which does not make sense. 
Thus, the options are either (a) have the relational engine 
order the result tuples first by last name and then by type 
and scan the result in order to construct the XML 
document or (b) get an unordered set of tuples and do a 
grouping operation, by last name and then by type, 
outside the relational engine. The first approach is 
illustrated in Figure 25. 

Figure 25 illustrates several points. The first is that 
treating tag variables as attributes in the result relation 
provides a way of uniformly treating the contents of the 
result XML document. In this case, we are able to group 
by the tag variable just like any other attribute. The 
second observation is that some relational database 
functionality (hash-based group-by) is either not fully 
exploited or is duplicated outside. 

<author> 

<firstname> Richard </firstname> 

(Richard, Dawkins) 

(NULL, Darwin) 

<lastname> Dawkins </lastname> 

</author> 

<author> 

<lastname> Darwin </lastname> 

</author> 

Figure 21 

Figure 23 

<book> 
<author> 

<firstname> Richard </firstname> 
<lastname> Dawkins </lastname> 

</author> 
</book> 
<book> 

<author> 
<lastname> Darwin </lastname> 

</author> 
</book> 
<monograph> 

<author> 
<lastname> Darwin </lastname> 

</author> 
</monograph> 

5.4 Complex Element Construc tion 

Unfortunately, returning tag values as tuple attributes 
cannot handle all result construction problems. In 
particular, queries that are required to return complex 
XML elements are problematic. Consider a query that 
asks for all article elements in the XML data set, and 
furthermore assume that an article may have multiple 
authors and multiple titles. In object-relational 
terminology, article has two set-valued attributes, authors 
and titles, corresponding to two set sub-elements in XML 
terminology. 

WHERE <book>

<article> $a </article>


</> IN * CONFORMS TO pubs.dtd

CONSTRUCT <article> $a </>


To create the appropriate result, we must retrieve all 
authors and all titles for each article. This is difficult to do 
in the relational model because flattening multiple set-
valued attributes into tuple format gives rise to a multi-
valued dependency [11] and is likely to be very inefficient 
when the sets are large, for example, if papers have many 
authors and many titles. There appears to be no efficient 
way to tackle this problem in the traditional relational 
model. One solution would be to return separate relations, 
each flattening one set-valued attribute and “join” these 
relations outside the database while constructing the XML 
document. However, this requires duplication of database 
functionality both in terms of execution and optimization. 
This solution would be particularly bad for an element 
with many set-valued attributes. A related problem occurs 
when reconstructing recursive elements. We return to 
these issues in Section 6. 



WHERE <$p> <author> 
<(title|booktitle)> $t </> <name> Darwin </name> 
<author> <book> 

<lastname> $l </lastname> <title> Origin of Species </title> 
</> <title> The Descent of Man </title> 

</> IN * CONFORMS TO pubs.dtd </book> 
CONSTRUCT <author ID=authorID($l)> 

<name> $l </name> 
<$p ID=pID($p)> 

<title> $t </> 

(Darwin, book, Origin of Species) 
(Darwin, book, Descent of Man) 
(Darwin, monograph, Subclass 

<monograph> 
<title> Subclass Cirripedia </title> 

</monograph> 
</author> 

</> Cirripedia) <author> 
</> (Dawkins, book, The Selfish Gene) <name> Dawkins </name> 

<book> 
<title> The Selfish Gene </title> 

</book> 
</author> 

Figure 24 

5.5 Heterogeneous Results 

Consider the following XML-QL query that creates a 
result document having both titles and authors as elements 
(this is the heterogeneous result). This is easily handled in 
our approach for translating queries because this query 
would be split into two queries, one for selecting titles and 
another for selecting authors. The results of the two 
queries can be handled in different ways, one constructing 
title elements and another constructing author elements. 
The results can then be merged together. 

WHERE <article> 
<$p> $y </> 

</article> IN * CONFORMING TO pubs.dtd 
CONSTRUCT <$p> $y </> 

5.6 Nested Queries 

XML-QL is structured in terms of query blocks and one 
query block can be nested under another. These nested 
queries can be rewritten in terms of SQL queries, using 
outer joins (and possibly skolem function ids) to construct 
the association between a query and a sub-query. The 
details are complex and we omit it in the interest of space. 

6. Conclusions 

With the growing importance of XML documents as a 
means to represent data in the World Wide Web, there has 
been a lot of effort on devising new technologies to 
process queries over XML documents. Our focus in this 
paper, however, has been to study the virtues and 
limitations of the traditional relational model for 
processing queries over XML documents conforming to a 
schema. The potential advantages of this approach are 
many – reusing a mature technology, using an existing 
high performance system, and seamlessly querying over 
data represented as XML documents or relations. We 
have shown that it is possible to handle most queries on 
XML documents using a relational database, barring 
certain types of complex recursion. 

Figure 25 

Our qualitative evaluation based on real DTDs from 
diverse domains raises some performance concerns – 
specifically, in many cases relatively simple XML queries 
require either many SQL queries, or require a few SQL 
queries with many joins in them. It is an open question 
whether semi-structured query processing techniques can 
do this kind of work more efficiently. The fact that semi-
structured models represent a sequence of joins as a path 
expression, or handle what is logically a union of queries 
by using wildcards and “or” operators, does not 
automatically imply more efficient evaluation strategies. 

Our experience has shown that relational systems 
could more effectively handle XML query workloads with 
the following extensions: 

Support for Sets: Set-valued attributes would be useful 
in two important ways. First, storing set sub-elements as 
set-valued attributes [19,21] would reduce fragmentation. 
This is likely to be a big win because most of the 
fragmentation we observed in real DTDs was due to sets. 
Second, set-valued attributes, along with support for 
nesting [13], would allow a relational system to perform 
more of the processing required for generating complex 
XML results. 

Untyped/Variable-Typed References: IDREFs are not 
typed in XML. Therefore, queries that navigate through 
IDREFs cannot be handled in current relational systems 
without a proliferation of joins – one for each possible 
reference type. 

Information Retrieval Style Indices: More powerful 
indices, such as Oracle8i’s ConText search engine for 
XML [17], that can index over the structure of string 
attributes would be useful in querying over ANY fields in 
a DTD. Further, under restricted query requirements, 
whole fragments of a document can be stored as an 
indexed text field, thus reducing fragmentation. 

Flexible Comparisons Operators: A DTD schema 
treats every value as a string. This often creates the need 
to compare a string attribute with, say, an integer value, 
after typecasting the string to an integer. The traditional 
relational model cannot support such comparisons. The 
problem persists even in the presence of DCDs or XML 



Schemas because different DTDs may represent 
“comparable” values as different types. A related issue is 
that of flexible indices. Techniques for building such 
indices have been proposed in the context of semi-
structured databases [14]. 

Multiple-Query Optimization/Execution: As outlined 
in Section 4, complex path expressions are handled in a 
relational database by converting them into many simple 
path expressions, each corresponding to a separate SQL 
query. Since these SQL queries are derived from a single 
regular path expression, they are likely to share many 
relational scans, selections and joins. Rather than treating 
them all as separate queries, it may be more efficient to 
optimize and execute them as a group [20]. 

More Powerful Recursion: As mentioned in Section 4, 
in order to fully support all recursive path expressions, 
support for fixed point expressions defined in terms of 
other fixed point expressions (i.e., nested fixed point 
expressions) is required. 

These extensions are not by themselves new and have 
been proposed in other contexts. However, they gain new 
importance in light of our evaluation of the requirements 
for processing XML documents. Another important issue 
to be considered in the context of the World Wide Web is 
distributed query processing – taking advantage of 
queryable XML sources. Further research on these 
techniques in the context of processing XML documents 
will, we believe, facilitate the use of sophisticated 
relational data management techniques in handling the 
novel requirements of emerging XML-based applications. 
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