
MIT OpenCourseWare
http://ocw.mit.edu

20.453J / 2.771J / HST.958J Biomedical Information Technology

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

Relational Databases for Querying XML Documents:

Limitations and Opportunities

Jayavel Shanmugasundaram Kristin Tufte Gang He

Chun Zhang David DeWitt Jeffrey Naughton

Department of Computer Sciences

University of Wisconsin-Madison

{jai, tufte, czhang, dewitt, naughton}@cs.wisc.edu, ganghe@microsoft.com

Abstract

XML is fast emerging as the dominant standard
for representing data in the World Wide Web.
Sophisticated query engines that allow users to
effectively tap the data stored in XML
documents will be crucial to exploiting the full
power of XML. While there has been a great deal
of activity recently proposing new semi-
structured data models and query languages for
this purpose, this paper explores the more
conservative approach of using traditional
relational database engines for processing XML
documents conforming to Document Type
Descriptors (DTDs). To this end, we have
developed algorithms and implemented a
prototype system that converts XML documents
to relational tuples, translates semi-structured
queries over XML documents to SQL queries
over tables, and converts the results to XML. We
have qualitatively evaluated this approach using
several real DTDs drawn from diverse domains.
It turns out that the relational approach can
handle most (but not all) of the semantics of
semi-structured queries over XML data, but is
likely to be effective only in some cases. We
identify the causes for these limitations and
propose certain extensions to the relational

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

model that would make it more appropriate for
processing queries over XML documents.

1. Introduction

Extensible Markup Language (XML) is fast emerging as
the dominant standard for representing data on the
Internet. Like HTML, XML is a subset of SGML.
However, whereas HTML tags serve the primary purpose
of describing how to display a data item, XML tags
describe the data itself. The importance of this simple
distinction cannot be underestimated – because XML data
is self-describing, it is possible for programs to interpret
the data. This means that a program receiving an XML
document can interpret it in multiple ways, can filter the
document based upon its content, can restructure it to suit
the application’s needs, and so forth.

The initial impetus for XML may have been primarily
to enhance this ability of remote applications to interpret
and operate on documents fetched over the Internet.
However, from a database point of view, XML raises a
different exciting possibility: with data stored in XML
documents, it should be possible to query the contents of
these documents. One should be able to issue queries over
sets of XML documents to extract, synthesize, and
analyze their contents. But what is the best way to provide
this query capability over XML documents?

At first glance the answer is obvious. Since an XML
document is an example of a semi-structured data set (it is
tree-structured, with each node in the tree described by a
label), why not use semi-structured query languages and
query evaluation techniques? This is indeed a viable
approach, and there is considerable activity in the semi-
structured data community focussed upon exploiting this
approach [5,14]. While semi-structured techniques will
clearly work, in this paper we ask the question of whether
this is the only or the best approach to take. The downside
of using semi-structured techniques is that this approach
turns its back on 20 years of work invested in relational

http:naughton}@cs.wisc.edu
mailto:ganghe@microsoft.com

database technology. Is it really the case that we cannot
use relational technology, and must start afresh with new
techniques? Or can we leverage relational technology to
provide query capability over XML documents?

In this paper we demonstrate that it is indeed possible
to use standard commercial relational database systems to
evaluate powerful queries over XML documents. The key
that makes this possible is the existence of Document
Type Descriptors (DTDs) [2] (or an equivalent, such as
DCDs [4] or XML Schemas [16]). A DTD is in effect a
schema for a set of XML documents. Without DTDs or
their equivalent, XML will never reach its full potential,
because a tagged document is not very useful without
some agreement among inter-operating applications as to
what the tags mean. Put another way, the reason the
Internet community is so excited about XML is that there
is the vision of a future in which the vast majority of files
on the web are XML files conforming to DTDs. An
application encountering such a file can interpret the file
by consulting the DTDs to which the document conforms.

Our approach to querying XML documents is the
following. First, we process a DTD to generate a
relational schema. Second, we parse XML documents
conforming to DTDs and load them into tuples of
relational tables in a standard commercial DBMS (in our
case, IBM DB2). Third, we translate semi-structured
queries (specified in a language similar to XML-QL [9] or
Lorel [1]) over XML documents into SQL queries over
the corresponding relational data. Finally, we convert the
results back to XML.

The good news is that this works. A main contribution
of this paper is the description of an approach that enables
one to take the XML queries, data sets, and schemas so
foreign to the relational world and process them in
relational systems without any manual intervention. This
means that we are presented with a large opportunity: all
of the power of relational database systems can be
brought to bear upon the XML query problem.

However, the fact that something is possible does not
necessarily imply that it is a good idea. Our experience
with implementing this system and using it with over 30
different XML DTDs has revealed that there are a number
of limitations in current relational database systems that in
some instances make using relational technology for
XML queries either awkward or inefficient. Relational
technology proves awkward for queries that require
complex XML constructs in their results, and may be
inefficient when fragmentation due to the handling of set-
valued attributes and sharing causes too many joins in the
evaluation of simple queries. Another contribution of this
paper is the identification of those limitations, and a
discussion of how they might be removed. It is an open
question at this point whether the best approach is to start
with relational technology and try to remove those
limitations, or to start with a semi-structured system and
try to add the power and sophistication currently found in
relational query processing systems.

1.1	 Related Work

There has been a lot of work developing special purpose
query engines for semi-structured data [5,14]. Many of
the abstracts submitted to the XML query languages
workshop use this approach [18]. Our goal in this paper,
however, is to investigate the use of relational database
systems to process queries on semi-structured documents.
In this sense, our work is similar to the work on STORED
[10]. However, our approach differs in important ways.
The STORED approach uses a combination of relational
and semi-structured techniques to process any semi-
structured documents. We begin with the assumption that
the document conforms to a schema and store the
document entirely within the relational system. Further,
we handle recursive queries, address the issue of
constructing the result in XML and evaluate the relational
approach using real DTDs.

Oracle 8i provides some basic support for querying
XML documents using a relational engine [17]. However,
the translation from document schemas to relational
schemas is manual and not automatic as in our approach.
In addition, Oracle 8i does not provide support for semi-
structured queries over XML documents and provides
only primitive support for converting results to XML.

There has also been work on processing SGML data
using an OODBMS [6]. The conclusion was that this is
feasible with some extensions to OO query languages.
Our work considers a more restricted set of documents
(XML, rather than SGML) and considers mapping to the
relational model, rather than a general OO model.

Our method of eliminating wild cards and alternations
in path expression queries to enable processing by a
relational engine bears some similarities to the work on
compile time optimization of path expressions in semi-
structured query engines [12,15]. Our different focus,
however, results in modified techniques.

1.2 Roadmap

The rest of the paper is organized as follows. Section 2
gives an overview of XML documents, schemas and
query languages. The algorithms for translating DTDs and
XML documents to a relational format and an evaluation
of the algorithms using real DTDs are given in Section 3.
Section 4 describes the translation of queries over XML
documents to SQL queries. Section 5 deals with the
conversion of the results to XML. Section 6 concludes by
proposing extensions to the relational model that will
make it more suitable for processing XML documents.

2.	 Overview of XML, XML Schemas and
XML Query Languages

In this section, we give a very brief overview of XML,
XML schemas and XML query languages. Further details
can be obtained from the references.

2.1 Extensible Markup Langua ge

Extensible Markup Language (XML) is a hierarchical
data format for information exchange in the World Wide
Web. An XML document consists of nested element
structures, starting with a root element. Element data can
be in the form of attributes or sub-elements. Figure 1
shows an XML document that contains information about
a book. In this example, there is a book element that has
two sub-elements, booktitle and author. The author
element has an id attribute with value “dawkins” and is
further nested to provide name and address information.
Further information on XML can be found in [3,8].

<book>
<booktitle> The Selfish Gene </booktitle>
<author id = “dawkins”>

<name>
<firstname> Richard </firstname>
<lastname> Dawkins </lastname>

</name>
<address>

<city> Timbuktu </city>
<zip> 99999 </zip>

</address>
</author>

</book>

Figure 1

<!ELEMENT book (booktitle, author)

<!ELEMENT article (title, author*, contactauthor)>

<!ELEMENT contactauthor EMPTY>

<!ATTLIST contactauthor authorID IDREF IMPLIED>

<!ELEMENT monograph (title, author, editor)>

<!ELEMENT editor (monograph*)>

<!ATTLIST editor name CDATA #REQUIRED>

<!ELEMENT author (name, address)>

<!ATTLIST author id ID #REQUIRED>

<!ELEMENT name (firstname?, lastname)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT address ANY>

Figure 2

2.2 DTDs and other XML Sche mas

Document Type Descriptors (DTDs) [2] describe the
structure of XML documents and are like a schema for
XML documents. A DTD specifies the structure of an
XML element by specifying the names of its sub-elements
and attributes. Sub-element structure is specified using the
operators * (set with zero or more elements), + (set with

one or more elements), ? (optional), and | (or). All values
are assumed to be string values, unless the type is ANY in
which case the value can be an arbitrary XML fragment.
There is a special attribute, id, which can occur once for
each element. The id attribute uniquely identifies an
element within a document and can be referenced through
an IDREF field in another element. IDREFs are untyped.
Finally, there is no concept of a root of a DTD – an XML
document conforming to a DTD can be rooted at any
element specified in the DTD. Figure 2 shows a DTD
specification, while Figure 1 gives an XML document that
conforms to this DTD.

Document Content Descriptors (DCDs) [4] and XML
Schemas [16] are extensions to DTDs. For our purposes,
the main difference between these and DTDs is that they
allow typing of values and set size specification. If DCDs
and XML Schemas become standard, the additional
information would aid in our translation process; for
example, we could create tables with integer attributes
where appropriate instead of using just strings. The types
in the current DCD proposal are compatible with types
supported by current relational systems. More complex
types will require object-relational extensions.

2.3 XML Query Languages

SELECT X.author.lastname
FROM book X
WHERE X.booktitle = “The Selfish Gene”

Figure 3

WHERE <book>
<booktitle> The Selfish Gene </booktitle>
<author>

<lastname> $l </lastname>
</>

</> IN a.xml, b.xml
CONSTRUCT <lastname> $l </lastname>

Figure 4

There are many semi-structured query languages that can
be used to query XML documents, including XML-QL
[9], Lorel [1], UnQL [5] and XQL (from Microsoft). All
these query languages have a notion of path expressions
for navigating the nested structure of XML. XML-QL
uses a nested XML-like structure to specify the part of a
document to be selected and the structure of the result
XML document.

Figure 4 shows an XML-QL query to determine the
last name of an author of a book having title “The Selfish
Gene”, specified over a set of XML documents
conforming to the DTD in Figure 2. The last names thus
selected will be nested within a lastname tag, as specified
in the construct clause of the query. Lorel is more like
SQL and its representation of the same query is shown in
Figure 3. In this paper, we use a combination of XML-QL
and Lorel (modified appropriately for our purposes).

3.	 Storing XML Documents in a Relational
Database System

In this section, we describe how to generate relational
schemas from XML DTDs. The main issues that must be
addressed include (a) dealing with the complexity of DTD
element specifications (b) resolving the conflict between
the two-level nature of relational schemas (table and
attribute) vs. the arbitrary nesting of XML DTD schemas
and (c) dealing with set-valued attributes and recursion.

3.1	 Simplifying DTDs

In general, DTDs can be complex and generating
relational schemas that capture this complexity would be
unwieldy at best. Fortunately, one can simplify the details
of a DTD and still generate a relational schema that can
store and query documents conforming to that DTD.
Note that it is not necessary to be able to regenerate a
DTD from the generated relational schema. Rather, what
is required is that (a) any document conforming to the
DTD can be stored in the relational schema, and (b) any
XML semi-structured query over a document conforming
to the DTD can be evaluated over the relational database
instance.

Most of the complexity of DTDs stems from the
complex specification of the type of an element. For
instance, we could specify an element a as <!ELEMENT
a ((b|c|e)?,(e?|(f?,(b,b)*))*)>, where b, c, e and f are other
elements. However, at the query language level, all that
matters is the position of an element in the XML
document, relative to its siblings and the parent-child
relationship between elements in the XML document. We
now propose a set of transformations that can be used to
“simplify” any arbitrary DTD without undermining the
effectiveness of queries over documents conforming to
that DTD. These transformations are a superset of similar
transformations presented in [10].

e1** � e1* (e1, e2)* � e1*, e2* e1*? � e1* (e1, e2)? � e1?, e2? e1?* � e1* (e1|e2) � e1?, e2? e1?? � e1?

Figure 5 Figure 6

..., a*, ..., a*, ... � a*, ...

..., a*, ..., a?, ... � a*, ...

..., a?, ..., a*, ... � a*, ...

..., a?, ..., a?, ... � a*, …
…, a, …, a, … � a*, …

Figure 7
The transformations are of three types: (a) flattening

transformations which convert a nested definition into a
flat representation (i.e., one in which the binary operators
“,” and “|” do not appear inside any operator – see Figure
5) (b) simplification transformations, which reduce many
unary operators to a single unary operator (Figure 6) and

(c) grouping transformations that group sub-elements
having the same name (for example, two a* sub-elements
are grouped into one a* sub-element - see Figure 7). In
addition, all “+” operators are transformed to “*”
operators. Our example specification would be
transformed to: <!ELEMENT a (b*, c?, e*, f*)>.

The transformations preserve the semantics of (a) one
or many and (b) null or not null. The astute reader may
notice that we have lost some information about relative
orders of the elements. This is true; fortunately, this
information can be captured when a specific XML
document is loaded into this relational schema (e.g., by
position fields in the tuples representing some of the
elements.) We now explore techniques for converting a
simplified DTD to a relational schema.

3.2	 Motivation for Special Sche ma Conversion
Techniques

Traditionally, relational schemas have been derived from
a data model such as the Entity-Relationship model. This
translation is straightforward because there is a clear
separation between entities and their attributes. Each
entity and its attributes are mapped to a relation.

When converting an XML DTD to relations, it is
tempting to map each element in the DTD to a relation
and map the attributes of the element to attributes of the
relation. However, there is no correspondence between
elements and attributes of DTDs and entities and
attributes of the ER-Model. What would be considered
“attributes” in an ER-Model are often most naturally
represented as elements in a DTD. Figure 2 shows a
DTD that illustrates this point. In an ER-Model, author
would be an “entity” and firstname, lastname and address
would be attributes of that entity. In designing a DTD,
there is no incentive to make author an element and
firstname, lastname and address attributes. In fact, in
XML, if firstname and lastname were attributes, they
could not be nested under name because XML attributes
cannot have a nested structure. Directly mapping elements
to relations is thus likely to lead to excessive
fragmentation of the document.

3.3	 The Basic Inlining Techniq ue

The Basic Inlining Technique, hereafter referred to as
Basic, solves the fragmentation problem by inlining as
many descendants of an element as possible into a single
relation. However, Basic creates relations for every
element because an XML document can be rooted at any
element in a DTD. For example, the author element in
Figure 2 would be mapped to a relation with attributes
firstname, lastname and address. In addition, relations
would be created for firstname, lastname and address.

We must address two complications: set-valued
attributes and recursion. In the example DTD in Figure 2,
when creating a relation for article, we cannot inline the
set of authors because the traditional relational model

does not support set-valued attributes. Rather, we follow
the standard technique for storing sets in an RDBMS and
create a relation for author and link authors to articles
using a foreign key. Just using inlining (if we want the
process to terminate) necessarily limits the level of
nesting in the recursion. Therefore, we express the
recursive relationship using the notion of relational keys
and use relational recursive processing to retrieve the
relationship. In order to do this in a general fashion, we
introduce the notion of a DTD graph.

book

author

title

contactauthor

authorID

editor

*

?

*

name

article monograph

booktitle

name
address authorid

?

firstname lastname

Figure 8

editor

* name

monograph

title

author

name address authorid

?

firstname lastname

Figure 9
A DTD graph represents the structure of a DTD. Its

nodes are elements, attributes and operators in the DTD.
Each element appears exactly once in the graph, while
attributes and operators appear as many times as they
appear in the DTD. The DTD graph corresponding to the
DTD in Figure 2 is given in Figure 8. Cycles in the DTD
graph indicate the presence of recursion.

The schema created for a DTD is the union of the sets
of relations created for each element. In order to
determine the set of relations to be created for a particular
element, we create a graph structure called the element
graph. The element graph is constructed as follows.

Do a depth first traversal of the DTD graph, starting at
the element node for which we are constructing relations.

Each node is marked as “visited” the first time it is
reached and is unmarked it once all its children have been
traversed.

If an unmarked node in the DTD graph is reached
during depth first traversal, a new node bearing the same
name is created in the element graph. In addition, a
regular edge is created from the most recently created
node in the element graph with the same name as the DFS
parent of the current DTD node to the newly created node.

If an attempt is made to traverse an already marked
DTD node, then a backpointer edge is added from the
most recently created node in the element graph to the
most recently created node in the element graph with the
same name as the marked DTD node.

The element graph for the editor element in the DTD
graph in Figure 8 is shown in Figure 9. Intuitively, the
element graph expands the relevant part of the DTD graph
into a tree structure.

Given an element graph, relations are created as
follows. A relation is created for the root element of the
graph. All the element’s descendents are inlined into that
relation with the following two exceptions: (a) children
directly below a “*” node are made into separate relations
– this corresponds to creating a new relation for a set-
valued child; and (b) each node having a backpointer edge
pointing to it is made into a separate relation – this
corresponds to creating a new relation to handle recursion.
Figure 10 shows the relational schema that would be
generated for the DTD in Figure 2. There are several
features to note in the schema. Attributes in the relations
are named by the path from the root element of the
relation. Each relation has an ID field that serves as the
key of that relation. All relations corresponding to
element nodes having a parent also have a parentID field
that serves as a foreign key. For instance, the
article.author relation has a foreign key
article.author.parentID that joins authors with articles.
The XML document in Figure 1 would be converted to
the following tuple in the book relation:

(1, The Selfish Gene, Richard, Dawkins,
<city>Timbuktu</city><zip>99999</zip>, dawkins)

The ANY field, address, is stored as an uninterpreted
string; thus the nested structure is not visible to the
database system without further support for XML (see
Section 6). Note that if the author Richard Dawkins has
authored many books, then the author information will be
replicated for each book because it is replicated in the
corresponding XML documents.

While Basic is good for certain types of queries, such
as “list all authors of books”, it is likely to be grossly
inefficient for other queries. For example, queries such as
“list all authors having first name Jack” will have to be
executed as the union of 5 separate queries. Another
disadvantage of Basic is the large number of relations it
creates. Our next technique attempts to resolve these
problems.

book (bookID: integer, book.booktitle : string, book.author.name.firstname: string, book.author.name.lastname: string,
book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorID: integer, article.author.parentID: integer, article.author.name.firstname: string,
article.author.name.lastname: string, article.author.address: string, article.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor.authorid: string)

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.title: string, monograph.editor.name: string,
monograph.author.name.firstname: string, monograph.author.name.lastname: string,
monograph.author.address: string, monograph.author.authorid: string)

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editor.monographID: integer, editor.monograph.parentID: integer, editor.monograph.title: string,
editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string,
editor.monograph.author.address: string, editor.monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string,
author.authorid: string)

name (nameID: integer, name.firstname: string, name.lastname: string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

address (addressID: integer, address: string)

Figure 10

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string)

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string)

monograph (monographID: integer,monograph.parentID: integer, monograph.parentCODE: integer,

monograph.editor.isroot: boolean, monograph.editor.name: string)

title (titleID: integer, title.parentID: integer, title.parentCODE: integer, title: string)

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean,
author.name.firstname.isroot: :boolean, author.name.firstname: string, author.name.lastname.isroot: boolean,
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string)

Figure 11

3.4 The Shared Inlining Technique

The Shared Inlining Technique, hereafter referred to as
Shared, attempts to avoid the drawbacks of Basic by
ensuring that an element node is represented in exactly
one relation. The principal idea behind Shared is to
identify the element nodes that are represented in multiple
relations in Basic (such as the firstname, lastname and
address elements in the example) and to share them by
creating separate relations for these elements.

We must first decide what relations to create. In
Shared, relations are created for all elements in the DTD
graph whose nodes have an in-degree greater than one.
These are precisely the nodes that are represented as
multiple relations in Basic. Nodes with an in-degree of
one are inlined. Element nodes having an in-degree of
zero are also made separate relations, because they are not
reachable from any other node. As in Basic, elements
below a “*” node are made into separate relations.
Finally, of the mutually recursive elements all having in-
degree one (such as monograph and editor in Figure 8),

one of them is made a separate relation. We can find such
mutually recursive elements by looking for strongly
connected components in the DTD graph.

Once we decide which element nodes are to be made
into separate relations, it is relatively easy to construct the
relational schema. Each element node X that is a separate
relation inlines all the nodes Y that are reachable from it
such that the path from X to Y does not contain a node
(other than X) that is to be made a separate relation.
Figure 11 shows the schema derived from the DTD graph
of Figure 8. One striking feature is the small number of
relations compared to the Basic schema (Figure 10).

Inlining an element X into a relation corresponding to
another element Y creates problems when an XML
document is rooted at the element X. To facilitate queries
on such elements we make use of isRoot fields.

The element sharing in Shared has query processing
implications. For example, a selection query over all
authors accesses only one relation in Shared compared to
five relations in Basic. Despite the fact that Shared
addresses some of the shortcomings and shares some of

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string, author.name.firstname: string,
author.name.lastname: string, author.address: string, author.authorid: string)

article (articleID: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string,
article.title.isroot: boolean, article.title: string)

monograph (monographID: integer, monograph.parentID: integer, monograph.parentCODE: integer,
monograph.title: string, monograph.editor.isroot: boolean, monograph.editor.name: string,
author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

author (authorID: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean,
author.name.firstname.isroot: boolean, author.name.firstname: string, author.name.lastname.isroot: boolean,
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string)

Figure 12

the	 strengths of Basic, Basic performs better in one
important respect – reducing the number of joins starting
at a particular element node. Thus we explore a hybrid
approach that combines the join reduction properties of
Basic with the sharing features of Shared

3.5	 The Hybrid Inlining Technique

The Hybrid Inlining Technique, or Hybrid, is the same as
Shared except that it inlines some elements that are not
inlined in Shared. In particular, Hybrid additionally
inlines elements with in-degree greater than one that are
not recursive or reached through a “*” node. Set sub-
elements and recursive elements are treated as in Shared.
Figure 12 shows the relational schema generated using
this hybrid approach. Note how this schema combines
features of both Basic and Shared – author is inlined with
book and monograph even though it is shared, while
monograph and editor are represented exactly once.

So far, we have implicitly assumed that the data model
is unordered, i.e., the position of an element does not
matter. Order could, however, be easily incorporated into
our framework by storing a position field for each
element.

3.6	 A Qualitative Evaluation of the Basic, Shared
and Hybrid Techniques

In this section we qualitatively evaluate our relation-
conversion algorithms using 37 DTDs available from
Robin Cover's SGML/XML Web page [8]. We did not
pose any criterion for selecting DTDs except for
availability for easy download and validity. Some DTDs
were excluded because they did not pass our XML parser,
the IBM alphaWorks xml4j.

3.6.1 Evaluation Metric

Our major concern in evaluating the algorithms is the
efficiency of query processing. Our metric is the average
number of SQL joins required to process path expressions
of a certain length N. We use this metric because path
expressions are at the heart of query languages proposed
for semi-structured data. We are particularly concerned

about path expressions because we use a relational
database which uses joins to process path expressions.

This subsection logically contains “forward
references” to Section 4, in which we describe how SQL
queries are generated from semi-structured XML queries.
However, the only point from Section 4 that is necessary
to understand the results here is that a single semi-
structured query could give rise to a union of several SQL
queries, and that each of these queries may contain some
number of joins. The use of Basic vs. Shared vs. Hybrid
determines how many queries are generated, and how
many joins are found in each query. Although Basic and
Hybrid reduce the number of joins per SQL query, their
higher degree of inlining could cause more SQL queries
to be generated. For each algorithm, each DTD, and a
variable number of path lengths, we make the following
measurements:

•	 The average number of SQL queries generated for
path expressions of length N.

•	 The average number of joins in each SQL query
for path expressions of length N.

•	 The total average number of joins in order to
process path expressions of length N (the product
of the two previous measurements.)

In Sections 3.6.2 and 3.6.3, we assume that path
expressions start from an arbitrary element in the DTD.
We relax this assumption in Section 3.6.4.

3.6.2	 Evaluation Results for Expression Paths of
Length 3

In this section we show the results for path expressions of
length 3, which is the longest path length applicable to all
37 DTDs. We shall examine the results for other path
lengths in the next section. In the interest of space, we
show the results only for a subset of the DTDs and
summarize the others.

First we consider whether the Basic approach is
practical. For 11 of our 37 DTDs, Basic did not run to
completion because it ran out of virtual memory. The
reason for this is that Basic generates huge numbers of
relations if DTDs have large strongly connected
components. We can see this effect clearly on some of
the DTDs that Basic did run to completion. One 19 node

am
l

bip
s1

4
m

at
h

nit
f-x

of
x1

51
6 pif

re
sid

en
tia

l
sa

ej
sm

il
vr

m
l

am
l

bip
s1

4
m

at
h

nit
f-x

of
x1

51
6 pif

re
sid

en
tia

l
sa

ej
sm

il
vr

m
l

DTD has a SCC size of 4, and the number of relations
created is 204 times as many as created by Hybrid,
totalling 3462 relations. Due to this severe limitation of
Basic, we concentrate on the comparisons between
Shared and Hybrid.

produces at least the number of SQL queries as Shared.
Figure 15 shows the total number of joins.

Using the average total number of joins required to
process path expressions of length 3, we can roughly
categorize the 37 DTDs into four groups:

Group 1. DTDs for which Hybrid reduces a large

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

am
l

bip
s1

4
m

at
h

nit
f-x

of
x1

51
6 pif

re
sid

en
tia

l
sa

ej
sm

il
vr

m
l

Jo
in

s/
Q

ue
ry

Shared Hybrid percentage of joins per SQL query but incurs a smaller
increase in the number of SQL queries. The net result is
Hybrid requires fewer joins than Shared. Example: DTD
“ofx1516”.

Group 2. DTDs for which Hybrid reduces a large
percentage of joins per SQL query and incurs a
comparable increase in the number of SQL queries. The
total number of joins is about the same. Example: DTD
“vrml”.

Group 3. DTDs for which Hybrid reduces some joins
per SQL query, but not enough to offset the increase in
the number of SQL queries; therefore Hybrid generates

Figure 13 more joins for a path expression than Shared. Example:
DTD “saej”.

Group 4. DTDs for which both Shared and Hybrid
produce about the same number of joins per SQL query,
and about the same number of SQL queries, resulting in
approximately the same total number of joins. Example:
DTD “math”.

Hybrid inlines more than Shared in Groups 1, 2 and 3.
This reduces the number of joins per SQL query but
increases the number of SQL queries. The net increase or
decrease in the total number of joins depends on the
structure of the DTD. In Group 4, most of the shared
nodes are either set nodes or involved in recursion. Since
Shared and Hybrid treat set nodes and recursive nodes

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Shared Hybrid

T
ot

al
 J

oi
ns

Q

ue
rie

s

Figure 14 identically, there is no significant difference in their
performance in Group 4. Shared Hybrid

Group 1 Group 2 Group 3 Group 4
Num
DTDs

13 2 6 16

2.5

2

1.5

1

0.5 The number of DTDs in each group from all 37 DTDs
0 is summarized in the table above. We can infer that in a

large number of DTDs (Group 4), most of the shared
nodes are either set nodes or recursive nodes.

3.6.3 Results for Path Expressions of Other Lengths
Figure 15

Figures 13, 14 and 15 show results for 10 of the
DTDs. As shown in Figure 13, Hybrid eliminates a large
number of joins for some DTDs, whereas for others,
Hybrid and Shared produce about the same number of
joins. Figure 14 shows that for some DTDs, querying over
3-length path expressions using Hybrid requires more
SQL queries than using Shared, while for other DTDs, the
number of SQL queries is the same. Note that for any path
expression, Shared always produces at least the number of
joins per SQL query as Hybrid, and Hybrid always

In the previous section, we showed the results for path
expressions of length 3. In order to see how the results
carry over to other path lengths, let us examine how the
number of joins scales with the path length. We found
that for almost all the DTDs, the number of joins scales
linearly with the path length, the only difference is the
scaling factor, which is determined by the structure of the
DTD. Furthermore, the gap between the performance of
Shared and Hybrid typically widens when the path
lengthens. Figure 16 and Figure 17 show the scaling for
two DTDs in group 1 and group 3 respectively.

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11

Path Length

T
ot

al
 J

oi
ns

Shared Hybrid

Figure 16

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11
Path Length

T
ot

al
 J

oi
ns

Shared Hybrid

Figure 17

3.6.4	 Evaluation Using Path Expressions Starting
From the Document Root

So far, we have examined the performance of our
algorithms assuming path expressions start from an
arbitrary node in the DTD graph. What is different if the
path expressions start from the root of a document? The
real difference is in the total number of joins. A path
expression starting from the root of a document is always
converted to one SQL query - therefore the total number
of joins is equivalent to the number of joins per SQL
query. Since the Hybrid algorithm always produces fewer
joins per SQL query, it is always better than Shared for
path expressions that start from the document root.

For DTDs in groups 3 and 4 (the majority of DTDs),
both Shared and Hybrid are practically the same. The
main issue is the excessive fragmentation of the DTDs
that leads to the number of joins being almost equal to the
length of the path expression (Figure 17). This is likely to
be very inefficient in the relational model, especially for
long path lengths. The main cause of this fragmentation is
the presence of set sub-elements. Section 6 includes a
proposed extension to alleviate this problem.

4.	 Converting Semi-Structured Queries to
SQL

Semi-structured query languages have a lot more
flexibility than SQL. In particular, they allow path
expressions with various operators and wild cards. The
challenge is to rewrite these queries in SQL exploiting
DTD information. In this section, we consider only
queries with string values as results. Queries with more
complex result formats are dealt with in Section 5. For
ease of exposition, we present the translation algorithm
only in the context of the Shared approach. The
generalization to the other approaches is straightforward.

4.1	 Converting Queries with Si mple Path
Expressions to SQL

Consider the following XML-QL query, and an
equivalent Lorel-like query, over the DTD in Figure 2 that
asks for the first and last name of the author of a book
with title “The Selfish Gene”. Note that we have slightly
extended the XML-QL syntax to query over all
documents conforming to a DTD.

Select Y.name.firstname,
Y.name.lastname

From book X, X.author Y
Where X.booktitle = “Databases”

WHERE <book>
<booktitle> The Selfish Gene </booktitle>
<author>

<name>
<firstname> $f </firstname>
<lastname> $l </lastname>

</name>
</author>

</book> IN * CONFORMING TO pubs.dtd
CONSTRUCT <result> $f $l </result>

As can be seen from the Lorel-like representation, this
query essentially consists of five path expressions,
namely, book, X.author, Y.name.firstname,
Y.name.lastname and X.booktitle. Of these path
expressions, book is the root path expression and the
others are dependent path expressions. This query is
translated into SQL as follows: (a) first, the relation(s)
corresponding to start of the root path expression(s) are
identified and added to the from clause of the SQL query,
then (b) if necessary, the path expressions are translated to
joins among relations (when elements are inlined, joins
are not necessary). The SQL query generated in this
fashion for the example query above is shown in Figure
18. Note that a join condition has been added to the where
clause to link the book and author and a selection
(A.parentCODE = 0, where 0 indicates that the parent of
the author is a book) is performed on author to make sure
that only authors reached through book are considered.

Select A.”author.name.firstname”,
A.”author.name.lastname”

From author A, book B
Where B.bookID = A.parentID

AND A.parentCODE = 0

AND B.”book.booktitle” = “The Selfish Gene”

Figure 18

4.2	 Converting Simple Recursive Path Expressions
to SQL

Consider the following XML-QL query that requires the
names of all editors reachable directly or indirectly from
the monograph with title “Subclass Cirripedia”. The
corresponding XML-QL query (and an equivalent Lorel­
like query) is shown below:

WHERE <*.monograph>
<editor.(monograph.editor)*>

<name> $n </name>
</>
<title> Subclass Cirripedia </title>

</> IN * CONFORMING TO pubs.dtd
CONSTRUCT <result> $n </result>

Select Y.name
From *.monograph X, X.editor.(monograph.editor)* Y
Where X.title = “Subclass Cirripedia”

There are two interesting features about this query.
The first is the tag “*.monograph” which states that we
are interested in monographs reachable from any path.
The second is the tag “editor.(monograph.editor)*” that
specifies all editors reachable directly or indirectly from a
monograph. The trick in converting this to a least fix-
point query such as that supported by IBM DB2 is to
determine (a) the initialization of the recursion and (b) the
actual recursive path expression. In the example above,
the initialization of the recursion is the path expression
*.monograph.editor with the selection condition
monograph.title = “Subclass Cirripedia” and the recursive
path expression is monograph.editor. Each can be
converted to a SQL fragment just like a simple path
expression. The final query is the union of the two SQL
fragments within a least fix-point operator. The query
generated in this fashion is shown in Figure 19, in IBM
DB2 syntax. Note that the “with clause” is the equivalent
of the least fix-point operator in DB2.

With Q1 (monographID, name) AS
(Select X.monographID, X.”editor.name”
From monograph X
Where X.title = “Subclass Cirripedia”
UNION ALL
Select Z.monographID, Z.”editor.name”
From Q1 Y, monograph Z
Where Y.monographID = Z.parentID AND

Z.parentCODE = 0
)
Select A.name
From Q1 A

Figure 19

4.3	 Converting Arbitrary Path Expressions to
Simple Recursive Path Expressions

In general, path expressions can be of arbitrary
complexity. For example, we could have a query that asks
for all the name elements reachable directly or indirectly
through monograph. This would be represented in a
Lorel-like language as (an equivalent query can be
expressed in XML-QL):

Select X
From monograph.(#)*.name X

We have a general technique that takes path
expressions appearing in such queries (in this example
“monograph.(#)*.name”) and translates them into
possibly many simple (recursive) path expressions. SQL
queries are then generated for each simple recursive path
expression. This notion of splitting a path expression to
many simple path expressions is crucial to processing
queries having arbitrary path expressions in SQL. The
details of the technique are tedious and we omit them here
in the interest of space.

Our technique is general enough to handle path
expressions with nested recursion (e.g., “(a.(b)*.c)*”).
However, relational database systems such as IBM DB2
cannot currently handle these queries because they do not
have support for nested recursive queries.

5. Converting Relational Results to XML

In the previous section, we assumed that the results of a
query were string values. We relax this assumption in this
section and explore how the tabular results returned by
SQL queries can be converted to complex structured
XML documents. This is perhaps the main drawback in
using current relational technology to provide XML
querying – constructing arbitrary XML result sets is
difficult. In this section we give some examples, using
XML-QL as the illustrative query languages because it
provides XML structuring constructs.

5.1 Simple Structuring

Consider the query in Figure 20 that asks for the first
name and last name of all the authors of books, nested
appropriately. Constructing such results from a relational
system is natural and efficient, since it only requires
attaching the appropriate tags for each tuple (Figure 21).

5.2 Tag Variables

A tag variable is one that ranges over the value of an
XML tag. Some queries requiring tag variables in their
results are naturally translated to the relational model.
Consider the query in Figure 22 that ask for names of
authors of all publications, nested under a tag specifying
the type of publication. This can be handled by
generating a relational query that contains the tag value as
an element of the result tuple. Then at result generation

WHERE <book>
<author>

<firstname> $f </firstname>
<lastname> $l </lastname>

</>
</> IN * CONFORMS TO pubs.dtd

CONSTRUCT <author>
<firstname> $f </firstname>
<lastname> $l </lastname>

</author>

Figure 20

WHERE <$p>
<author>

<firstname> $f </firstname>
<lastname> $l </lastname>

</>
</> IN * CONFORMS TO pubs.dtd

CONSTRUCT <$p>
<author>

<firstname> $f </firstname>
<lastname> $l </lastname>

</author>
</>

(book, Richard, Dawkins)
(book, NULL, Darwin)
(monograph, NULL, Darwin)

Figure 22

time, the tag attribute in the result tuple can be converted
to the appropriate XML tag (Figure 23).

5.3 Grouping

Consider the query in Figure 24 that requires all the
publications of an author (assuming an author is uniquely
identified by his/her last name) to be grouped together,
and within this structure, requires the titles of publications
to be grouped by the type of the publication. The
relational result from the translation of this query will be a
set of tuples having fields corresponding to last name of
author, title of publication and type of publication.
However, we cannot use the relational group-by operator
to group by last name and type of publication because the
SQL group-by semantics implies that we should apply an
aggregate function to title, which does not make sense.
Thus, the options are either (a) have the relational engine
order the result tuples first by last name and then by type
and scan the result in order to construct the XML
document or (b) get an unordered set of tuples and do a
grouping operation, by last name and then by type,
outside the relational engine. The first approach is
illustrated in Figure 25.

Figure 25 illustrates several points. The first is that
treating tag variables as attributes in the result relation
provides a way of uniformly treating the contents of the
result XML document. In this case, we are able to group
by the tag variable just like any other attribute. The
second observation is that some relational database
functionality (hash-based group-by) is either not fully
exploited or is duplicated outside.

<author>

<firstname> Richard </firstname>

(Richard, Dawkins)

(NULL, Darwin)

<lastname> Dawkins </lastname>

</author>

<author>

<lastname> Darwin </lastname>

</author>

Figure 21

Figure 23

<book>
<author>

<firstname> Richard </firstname>
<lastname> Dawkins </lastname>

</author>
</book>
<book>

<author>
<lastname> Darwin </lastname>

</author>
</book>
<monograph>

<author>
<lastname> Darwin </lastname>

</author>
</monograph>

5.4 Complex Element Construc tion

Unfortunately, returning tag values as tuple attributes
cannot handle all result construction problems. In
particular, queries that are required to return complex
XML elements are problematic. Consider a query that
asks for all article elements in the XML data set, and
furthermore assume that an article may have multiple
authors and multiple titles. In object-relational
terminology, article has two set-valued attributes, authors
and titles, corresponding to two set sub-elements in XML
terminology.

WHERE <book>

<article> $a </article>

</> IN * CONFORMS TO pubs.dtd

CONSTRUCT <article> $a </>

To create the appropriate result, we must retrieve all
authors and all titles for each article. This is difficult to do
in the relational model because flattening multiple set-
valued attributes into tuple format gives rise to a multi-
valued dependency [11] and is likely to be very inefficient
when the sets are large, for example, if papers have many
authors and many titles. There appears to be no efficient
way to tackle this problem in the traditional relational
model. One solution would be to return separate relations,
each flattening one set-valued attribute and “join” these
relations outside the database while constructing the XML
document. However, this requires duplication of database
functionality both in terms of execution and optimization.
This solution would be particularly bad for an element
with many set-valued attributes. A related problem occurs
when reconstructing recursive elements. We return to
these issues in Section 6.

WHERE <$p> <author>
<(title|booktitle)> $t </> <name> Darwin </name>
<author> <book>

<lastname> $l </lastname> <title> Origin of Species </title>
</> <title> The Descent of Man </title>

</> IN * CONFORMS TO pubs.dtd </book>
CONSTRUCT <author ID=authorID($l)>

<name> $l </name>
<$p ID=pID($p)>

<title> $t </>

(Darwin, book, Origin of Species)
(Darwin, book, Descent of Man)
(Darwin, monograph, Subclass

<monograph>
<title> Subclass Cirripedia </title>

</monograph>
</author>

</> Cirripedia) <author>
</> (Dawkins, book, The Selfish Gene) <name> Dawkins </name>

<book>
<title> The Selfish Gene </title>

</book>
</author>

Figure 24

5.5 Heterogeneous Results

Consider the following XML-QL query that creates a
result document having both titles and authors as elements
(this is the heterogeneous result). This is easily handled in
our approach for translating queries because this query
would be split into two queries, one for selecting titles and
another for selecting authors. The results of the two
queries can be handled in different ways, one constructing
title elements and another constructing author elements.
The results can then be merged together.

WHERE <article>
<$p> $y </>

</article> IN * CONFORMING TO pubs.dtd
CONSTRUCT <$p> $y </>

5.6 Nested Queries

XML-QL is structured in terms of query blocks and one
query block can be nested under another. These nested
queries can be rewritten in terms of SQL queries, using
outer joins (and possibly skolem function ids) to construct
the association between a query and a sub-query. The
details are complex and we omit it in the interest of space.

6. Conclusions

With the growing importance of XML documents as a
means to represent data in the World Wide Web, there has
been a lot of effort on devising new technologies to
process queries over XML documents. Our focus in this
paper, however, has been to study the virtues and
limitations of the traditional relational model for
processing queries over XML documents conforming to a
schema. The potential advantages of this approach are
many – reusing a mature technology, using an existing
high performance system, and seamlessly querying over
data represented as XML documents or relations. We
have shown that it is possible to handle most queries on
XML documents using a relational database, barring
certain types of complex recursion.

Figure 25

Our qualitative evaluation based on real DTDs from
diverse domains raises some performance concerns –
specifically, in many cases relatively simple XML queries
require either many SQL queries, or require a few SQL
queries with many joins in them. It is an open question
whether semi-structured query processing techniques can
do this kind of work more efficiently. The fact that semi-
structured models represent a sequence of joins as a path
expression, or handle what is logically a union of queries
by using wildcards and “or” operators, does not
automatically imply more efficient evaluation strategies.

Our experience has shown that relational systems
could more effectively handle XML query workloads with
the following extensions:

Support for Sets: Set-valued attributes would be useful
in two important ways. First, storing set sub-elements as
set-valued attributes [19,21] would reduce fragmentation.
This is likely to be a big win because most of the
fragmentation we observed in real DTDs was due to sets.
Second, set-valued attributes, along with support for
nesting [13], would allow a relational system to perform
more of the processing required for generating complex
XML results.

Untyped/Variable-Typed References: IDREFs are not
typed in XML. Therefore, queries that navigate through
IDREFs cannot be handled in current relational systems
without a proliferation of joins – one for each possible
reference type.

Information Retrieval Style Indices: More powerful
indices, such as Oracle8i’s ConText search engine for
XML [17], that can index over the structure of string
attributes would be useful in querying over ANY fields in
a DTD. Further, under restricted query requirements,
whole fragments of a document can be stored as an
indexed text field, thus reducing fragmentation.

Flexible Comparisons Operators: A DTD schema
treats every value as a string. This often creates the need
to compare a string attribute with, say, an integer value,
after typecasting the string to an integer. The traditional
relational model cannot support such comparisons. The
problem persists even in the presence of DCDs or XML

Schemas because different DTDs may represent
“comparable” values as different types. A related issue is
that of flexible indices. Techniques for building such
indices have been proposed in the context of semi-
structured databases [14].

Multiple-Query Optimization/Execution: As outlined
in Section 4, complex path expressions are handled in a
relational database by converting them into many simple
path expressions, each corresponding to a separate SQL
query. Since these SQL queries are derived from a single
regular path expression, they are likely to share many
relational scans, selections and joins. Rather than treating
them all as separate queries, it may be more efficient to
optimize and execute them as a group [20].

More Powerful Recursion: As mentioned in Section 4,
in order to fully support all recursive path expressions,
support for fixed point expressions defined in terms of
other fixed point expressions (i.e., nested fixed point
expressions) is required.

These extensions are not by themselves new and have
been proposed in other contexts. However, they gain new
importance in light of our evaluation of the requirements
for processing XML documents. Another important issue
to be considered in the context of the World Wide Web is
distributed query processing – taking advantage of
queryable XML sources. Further research on these
techniques in the context of processing XML documents
will, we believe, facilitate the use of sophisticated
relational data management techniques in handling the
novel requirements of emerging XML-based applications.

7.	 Acknowledgements

Funding for this work was provided by DARPA through
Rome Research Laboratory Contract No. F30602-97-2­
0247 and NSF through NSF Award CDA-9623632.

8.	 References

1.	 S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.
Wiener, “The Lorel Query Language for
Semistructured Data”, International Journal on
Digital Libraries, 1(1), pp. 68-88, April 1997.

2.	 J. Bosak, T. Bray, D. Connolly, E. Maler, G. Nicol,
C. M. Sperberg-McQueen, L. Wood, J. Clark, “W3C
XML Specification DTD”,
http://www.w3.org/XML/1998/06/xmlspec-report­
19980910.htm.

3.	 T. Bray, J. Paoli, C. M. Sperberg-McQueen,
“Extensible Markup Language (XML) 1.0”,
http://www.w3.org/TR/REC-xml.

4.	 T. Bray, C. Frankston, A. Malhotra, “Document
Content Description for XML”,
http://www.w3.org/TR/NOTE-dcd.

5.	 P. Buneman, S. Davidson, G. Hillebrand, D. Suciu,
“A Query Language and Optimization Techniques for

Unstructured Data”, Proceedings of the ACM
SIGMOD Conference, Montreal, Canada, June 1996.

6.	 V. Christophides, S. Abiteboul, S. Cluet, M. Scholl,
“From Structured Documents to Novel Query
Facilities”, Proceedings of the ACM SIGMOD
Conference, Minneapolis, Minnesota, May 1994.

7.	 G. Copeland, S. Khoshafian, “A Decomposition
Storage Model”, Proceedings of the ACM SIGMOD
Conference, Austin, Texas, May 1985.

8.	 R. Cover, “The SGML/XML Web Page”,
http://www.oasis-open.org/cover/xml.html.

9.	 Deutsch, M. Fernandez, D. Florescu, A. Levy, D.
Suciu, “XML-QL: A Query Language for XML”,
http://www.w3.org/TR/NOTE-xml-ql.

10.	 Deutsch, M. Fernandez, D. Suciu, “Storing Semi-
structured Data with STORED”, Proceedings of the
ACM SIGMOD Conference, Philadelphia,
Pennslyvania, May 1999.

11.	 R. Fagin, “Multi-valued Dependencies and a New
Normal Form for Relational Databases”, ACM
Transactions on Database Systems, 2(3), pp. 262-278,
1977.

12.	 M. Fernandez, D. Suciu, “Optimizing Regular Path
Expressions Using Graph Schemas”, Proceedings of
the Fourteenth ICDE Conference, Orlando, Florida,
February 1998.

13.	 Jaeschke, H. J. Schek, “Remarks on the Algebra of
Non First Normal Form Relations”, Proceedings of
the ACM Symposium on Principles of Database
Systems, Los Angeles, California, March 1982.

14.	 J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J.
Widom, “Lore: A Database Management System for
Semistructured Data”, SIGMOD Record, 26(3), pp.
54-66, September 1997.

15.	 J. McHugh, J. Widom, “Compile-Time Path
Expansion in Lore”, Workshop on Query Processing
for Semistructured Data and Non-Standard Data
Formats, Jerusalem, Israel, January 1999.

16.	 Microsoft Corporation, XML Schema,
http://www.microsoft.com/xml/schema/reference/star
.asp.

17.	 Oracle Corporation, “XML Support in Oracle 8 and
beyond”, Technical white paper,
http://www.oracle.com/xml/documents.

18.	 The Query Languages Workshop (QL’98),
http://www.w3.org/TandS/QL/QL98/, December
1998.

19.	 K. Ramasamy, J. F. Naughton, D. Maier, “Storage
Representations for Set-Valued Attributes”, Working
Paper, Department of Computer Sciences, University
of Wisconsin-Madison.

20.	 T. Sellis, “Multiple-Query Optimization”, ACM
Transactions on Database Systems, 12(1), pp. 23-52,
June 1990.

21.	 Zaniolo, “The Database Language GEM”,
Proceedings of the ACM SIGMOD Conference, San
Jose, California, May 1983.

http://www.w3.org/XML/1998/06/xmlspec-report-
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/NOTE-dcd
http://www.oasis-open.org/cover/xml.html
http://www.w3.org/TR/NOTE-xml-ql
http://www.microsoft.com/xml/schema/reference/star
http://www.oracle.com/xml/documents
http://www.w3.org/TandS/QL/QL98/

