16.121 ANALYTICAL SUBSONIC AERODYNAMICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Non-linear, Unsteady Transonic Flows

1 SOURCES

Ashley and Landahl: Aerodynamics of wings and bodies
Bisplinghoff and Ashley: Principles of aeroelasticity
Dowell, et al.: A modern course in aeroelasticity

Landahl: Unsteady transonic flow

2 ASSUMPTIONS

¢ 2-Dimensional

e Inviscid

¢ Small disturbances (MCL — body surface)

» Shock waves are straight

* Mach number near unity

¢ Continuous pressure across the wake

* No jump in normal velocity across the wake

¢ Kutta condition (AP vanishes at LE)



¢ Far-field conditions

¢ Small shock excurion amplitude
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Figure 2.1: Assumptions diagram
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Figure 3.1: Perturbation positions

Symbols

¢ Q = Magnitude of velocity vector
* Q = Velocity vector

¢ a=speed of sound

T =Time
* Uy = Free-stream velocity

* p = Density

VW = Full velocity potential; ¥ (x, z, T



* ® = Perturbation velocity potential; ®(x, z, T)
* X,z = Spatial coordinates

e 7 = Airfoil thickness ratio; ¢/c¢

* a,, = Mean angle of attack

¢ § = Amplitude of unsteady motion

* w = Frequency of unsteady motion
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B = Instantaneous airfoil position; B(x, z, )
4 SHOCK EXCURSION AMPLITUDE
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4.1 GOVERNING EQUATIONS

Bernoulli’s equation

1D, 1

pDT &

2 2 2
a7+ ar v ()

Speed of sound
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Conservation of mass

SDr - vVe=v

Combine eqns. (4.1), (4.2), and (4.3) to obtain:
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Assume velocity field may be expressed as the sum of a uniform stream and perturbation upon

A
Uniform stream

Y(X,Z,T)=Uymlx+V¥'(X,Z,T)+...]

Combine equations (4.4) and (4.5) to obtain:

(4.5)
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Neglecting products of small terms and retaining "Transonic Terms", we obtain:
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Now introduce nondimensional variables:
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Equation (4.7) in nondimensional form becomes:

[(1 —M2) - M2 (y = 1)@ — M2 (y + 1)@y | Oxx + Dy —2M2 Oy — M2 Dy = 0 (4.9)

5 BOUNDARY CONDITIONS
B(x,z, t) = 0 — Instantaneous airfoil position
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The airfoil tangency condition may be expressed as:

— Fluid velocity normal to the airfoil

— Velocity of airfoil normal to itself

DB
o7 =B+ 1+ @B+ ®zB7=0 (5.1)

For a thin airfoil, ®, << 1; therefore, we may write:

Bi+By+®,B,=0 (5.2)

Insert the following restrictions:
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This restriction allows us to express the perturbation velocity potential as:
D(x,2, 1) = D(x,2) + D(x, 7, 1) (5.4)

Where ®(x,z) and its derivatives are much greater than ®(x,z, t) and its derivatives. The above
formulation is valid for small unsteady perturbations.

Within the above restrictions, equation (4.7) becomes:

(1= M%) = M2y + 1y D+ @, = 0 (5.5)

| (1= M%) = M2y + DO e = M2y + Do 56
+ &,y — M2(y — 1) Dy — 2M2 Dy — M2y = 0 '

Where we set My, = M, why?

Note that equation (5.5) is non-linear and steady. It is used to simulate thickness, camber, and
mean angle of attack.

Note that equation (5.6) is linear and unsteady. It is strongly coupled to equation (5.5).

6 METHODS OF SOLUTION

(a) Numerical simulation

(b) Hodograph plane

2-D, steady, shock-less — Tricomi equation
(c) Parametric differentiation
(d) Variational methods
(e) Weighted residues
(f) Local linearization
(g) Ray tracing

(h) Kernel Function (including Green’s function)



(i) Integral methods

(j): Matched asymptotic expansions

Similarity rules
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