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Thin Wing Theory

Objective:
* Derive the equations of motion governing the subsonic flow around thin wings

* Use matched asymptotic expansions
- Physical insight increase

- Contrast airfoil with slender body of revolution

Assumptions:

Steady flow

Inviscid flow

Irrotational flow

Adiabatic fluid

* Ideal gas

* Constant specific heats
* Wing is in the x,y-plane

Notation:
7 = Thickness ratio
a = Angle of attack
0 = A measure of the amount of camber
g(x) = Thickness distribution along the chord
h(x) = Camber distribution along the chord
& and h are both smooth
g’ and /' are of order of unity everywhere
T<<1l,0<<l,a<<1

Zu = €fu(X) = TZu(x) + Ohy(x) — ax

z1=€fi(x) = —TGu(x) + 0hy(x) — ax



e

€ = Small dimensionless quantity measuring maximum cross wise extension of the airfoil

We will treat two dimensional flow. Extension to three dimensions is straightforward. We week the
leading terms in a series expansion in € of ®. We have shown the governing equations to be:

(@® = DL Dy + (@ — D2 D, — 20, D, D, =0

a*=a —Tl(q>§+q>§—U§o)

2 -1 1ly=1)

Cp=—2 “1—Y (@ +oi-u2)|"" —1]
YMS, 2as,

The boundary conditions are:

A Q=Us i,(x,2) — 00

B) Flow is tangent to the airfoil surface

e
O, /0 =¢€ fu
dx

,Zzefu

dfi -
O, /D, = ed—{c,z =€f)

C) Pressure is continuous at the trailing edge - Kutt-Jovkowsky condition

Assume in outer expansion:
®° = Uy, | 0°(x, 2) + €DV (x, 2) +...

Since the airflow in the limit of € — 0 collapses to a line parallel to the free stream, the zeroth order
term must represent parallel undisturbed flow. Thus,



Substituting, we obtain:

(1-MZ)®) +@) =0

oY + @?z — 0,forv x2 + z2

ix
The remaning boundary conditions belong to the inner region and are to be obtained by matching.
We assume:

' = Upo [ @ (x, 2) + €D (x, 2) + €2 DL (x, 2) +...]

z=12zle
The stretching enables us to focus on the flow in the immediate neighborhood of the airfoil in the
limit of € — 0 since the airfoil shape then remains independent of € and the width of the inner region
becomes of order unity.

The zeroth-order inner term is that of a parallel flow, that is:

i_
Dy=x

(Both inner and outer flow must be parallel in the limite — 0.)
Examining the W-velocity component in the inner region, we may write:
P i s i s
W=0,=-0;= Uoo [@1, (%, 2) +€D)_(x, 2)]
Since Q must vanish in the limit of zero €, @i must be independent of zZ. Hence, let:
o] = &1 (0)
£1(x) may be different above and below the airfoil
We now write:

D' = Upo[x+ €81 (x) +€2DL(x,2) +...]

Substituting the above equation into the governing equation and boundary conditions, we obtain:

27z

D) = Ju

d L
2=y for z= f,(x)

(I>§Z = % for z = fl(x)

The the solution must be linear in z,

. df, ) o
®§:z£+ggu(x),z2fu
codfi .
®§:z5+gzl(x),zzfl



The inner solution cannot give vanishing disturbances at infinity since the boundary condition be-
longs to the outer region. We need to match the inner and outer solutions.

We will employ the asymptotic matching principle to complete the required matching.

From ®! above we note that W' is independent of Z to lowest order. Thus, in the outer limit at Z = oo,
we have:

dfu
dx

. 1 .
wi= Eq>’2(x,oo) =¢

and

w0 =e@?

1z
Equating the inner limit (z = 0*), we obtain:
g7
@), (x,07) = d—]:;‘
_df
@), (x,07) = d—];l

Matching the potential, we find:

g1, (x) = ®%(x,0")

To determine g it is necessary to include higher order terms in the outer solution.
First, we write the two-term outer flow in inner variables,

@0 = Upo(x + €@} (x,€2) +...)

Taking the three term inner expansion of this:

@0 = Upo(x+ €DV (x,0") + €229, (x,0") +...)

Rewriting the above equation in outer variables:

D = Upo(x+€D)(x,0") + €20, (x,0%) +...)

The three-term inner expansion, expressed in outer variables, reads:

df,

ol = Uso(x+€81, (%) + ezd—u + ezgéu (X) +...)
X

Now equate the two-term outer expansion of the three term inner expansion:

df

Q! = Ugo(x+€87, (X) +€2—2 + ...
o ( 81, (%) dx )
To the three term inner expansion of the two-term outer expansion leads to:
= _ & 0F
glu - (I)i (x’o )
dfu
) (x,0%) ===
1 ( ) dx

And C), takes the following form:

Cp = —2e®Y, (x,0%)



"+" — upper surface
"-" — lower surface
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