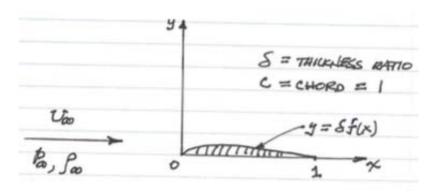
## Slender Body Theory

Let's take another look at the Prandtl-Glauert rule. We shall rely more on regular perturbation methods and boundary conditions. Our flow field is:



Assume inviscid, irrotational, compressible flow of an ideal, perfect gas over a slender body,  $\delta << 1$ . We have:

$$\vec{Q} = \nabla \Phi = \Phi_x \vec{i} - \Phi_y \vec{j}$$

The equations for conservation of mass and linear momentum are:

$$(a^2 - \Phi_x^2)\Phi_{xx} - 2\Phi_x\Phi_y\Phi_{xy} + (a^2 - \Phi_y^2)\Phi_{yy} = 0$$

$$\frac{a^2}{\gamma - 1} + \frac{1}{2}(\Phi_x^2 + \Phi_y^2) = \frac{a_\infty^2}{\gamma - 1} + \frac{1}{2}U_\infty^2$$

Where

a = speed of sound 
$$\gamma$$
 = specific heat ratio

The subscript  $\infty$  denotes conditions far from the airfoil body. The boundary condition on the body surface may be expressed as:

$$\frac{\Phi_{y}[x,\delta f(x)]}{\Phi_{x}[x,\delta f(x)]} = \delta \frac{df}{dx} = \delta f'(x)$$

And far from the body

$$\Phi(x,y) \to U_{\infty}x$$
,  $as|x| \to \infty$ 

Consider the limiting case  $\delta \to 0$ , holding  $M_{\infty}$  fixed. Assume an asymptotic expansion for the velocity potential of the following form:

$$\Phi(x, y; \delta, M_{\infty}) \sim U_{\infty}[x + \epsilon_0(\delta)\Phi_0(x, y; M_{\infty}) + \epsilon_1(\delta)\Phi_1(x, y; M_{\infty}) + ...]$$

What does the first term on the right-hand side represent? Is the term correct? Why? Why not?

Consider the surface boundary condition. First, we expand  $\Phi_y[x, \delta f(x)]$  in a Taylor series about (x,0):

$$\Phi_{\gamma}(x,\delta f(x)) \sim \Phi_{\gamma}(x,0) + \delta f(x) \Phi_{\gamma\gamma}(x,0) + \dots$$

Substituting and taking the derivative with respect to y:

$$\Phi_{\gamma}(x,\delta f(x)) \sim U_{\infty}[\epsilon_0 \Phi_{0_{\gamma}}(x,0;M_{\infty}) + \epsilon_1 \Phi_{1_{\gamma}}(x,0;M_{\infty}) + \ldots] + U_{\infty} \delta f(x)[\epsilon_0 \Phi_{0_{\gamma\gamma}}(x,0;M_{\infty}) + \ldots]$$

Thus:

$$\Phi_{\nu}(x,\delta f(x)) \sim U_{\infty}[\epsilon_0 \Phi_{0\nu}(x,0;M_{\infty}) + \epsilon_1 \Phi_{1\nu}(x,0;M_{\infty}) + \delta \epsilon_0 f(x) \Phi_{0\nu\nu}(x,0;M_{\infty}) + \dots]$$

We may also calculate  $\Phi_x(x, \delta f(x))$ :

$$\Phi_x(x, \delta f(x)) \sim U_{\infty}(1 + \epsilon_0 \Phi_{0x}(x, 0; M_{\infty}) + ...)$$

The surface boundary condition takes the following form:

$$\begin{split} \frac{\Phi_y(x,\delta f(x))}{\Phi_x(x,\delta f(x))} & \sim \frac{U_\infty[\epsilon_0\Phi_{0_y}(x,0;M_\infty) + \epsilon_1\Phi_{1_y}(x,0;M_\infty) + \delta\epsilon_0 f(x)\Phi_{0_{yy}}(x,0;M_\infty) + \ldots]}{U_\infty[1 + \epsilon_0\Phi_{0_x}(x,0;M_\infty) + \ldots]} \\ & \sim (\epsilon_0\Phi_{0_y} + \epsilon_1\Phi_{1_y} + \delta\epsilon_0 f\Phi_{0_{yy}})(1 - \epsilon_0\Phi_{0_x}) + \ldots \\ & \sim \epsilon_0\Phi_{0_y} + \epsilon_1\Phi_{1_y} + \delta\epsilon_0 f\Phi_{0_{yy}} - \epsilon_0^2\Phi_{0_x}\Phi_{0_y} + \ldots \end{split}$$

$$\delta f'(x) = \epsilon_0 \Phi_{0_y} + \epsilon_1 \Phi_{1_y} + \delta \epsilon_0 f \Phi_{0_{yy}} - \epsilon_0^2 \Phi_{0_x} \Phi_{0_y} + \dots$$

For our assumed asymptotic sequence  $\epsilon^n$ , we balance the leading term with no contradiction, i.e., the distinguished limit:

$$\epsilon_0(\delta) = \delta$$

Hence

$$\frac{\partial \Phi_0}{\partial v}(x,0;M_\infty) = f'(x)$$

Balancing the next order of terms:

$$\epsilon_1 = \delta \epsilon_0 = \delta^2$$

And

$$0\sim\epsilon_1\Phi_{1_y}+\delta\epsilon_0+\Phi_{0_{yy}}-\epsilon_0^2\Phi_{0_x}\Phi_{0_y}$$

$$0 \sim \delta^2 \Phi_{1_y} + \delta^2 f \Phi_{0_{yy}} - \delta^2 \Phi_{0_x} \Phi_{0_y}$$

$$0 \sim \Phi_{1_{\gamma}}(x,0;M_{\infty}) + f\Phi_{0_{\gamma\gamma}}(x,0;M_{\infty}) - \Phi_{0_{\gamma}}(x,0;M_{\infty})\Phi_{0_{\gamma}}(x,0;M_{\infty})$$

$$\Phi_{1_{y}}(x,0;M_{\infty}) = \frac{\partial \Phi_{1}}{\partial y}(x,0;M_{\infty}) = [\Phi_{0_{x}}\Phi_{0,y} - f\Phi_{0_{yy}}]_{(x,0,M_{\infty})}$$

There is no contradiction since  $\Phi_1$  is determined from  $\Phi_0$ . This means that our perturbation solution yields a linearized boundary condition at the body surface at each order of  $\epsilon^n$ .

The conservation equations take the following form:

$$a^2 = a_{\infty}^2 - (\gamma - 1)U_{\infty}^2 \delta \Phi_{0_x} + O(\delta^2)$$

$$(M_{\infty}^2 - 1)\Phi_{0_{xx}} - \Phi_{0_{yy}} = 0$$

And for  $\Phi_1$ :

$$(M_{\infty}^2-1)\Phi_{1_{xx}}-\Phi_{1_{yy}}=M_{\infty}^2[(\gamma-1)M_{\infty}^2-2]\Phi_{0_x}\Phi_{0_{xx}}-2M_{\infty}^2\Phi_{0_y}\Phi_{0_{xy}}$$

The above zeroth order equation,  $\Phi_0$ , is the basis of slender body theory. The Prandtl-Glauert rule is shown by re-scaling the x-coordinate:

For  $M_{\infty}$  < 1:

$$\xi = \frac{x}{\sqrt{1 - M_{\infty}^2}}$$

$$\Phi_{0_{\xi\xi}}+\Phi_{0_{yy}}=0$$

$$C_p = \frac{P - P_{\infty}}{\frac{1}{2} P_{\infty} U_{\infty}^2} \sim -2\delta \Phi_{0_x} \sim \frac{2\delta}{\sqrt{1 - M_{\infty}^2}} \Phi_{0_{\xi}}$$

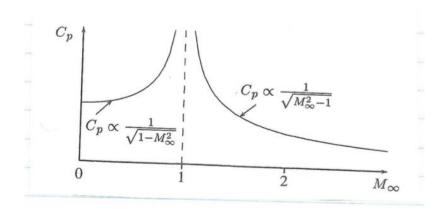
Note we have assumed:

$$\sqrt{1-M_{\infty}^2} >> \delta$$

$$M_{\infty}\delta << 1$$

Where:

$$\sqrt{M_{\infty}^2-1}\sim\delta\rightarrow\text{Transonic flow}\\ M_{\infty}\delta\sim1\rightarrow\text{Hypersonic flow}$$



MIT OpenCourseWare <a href="https://ocw.mit.edu/">https://ocw.mit.edu/</a>

## 16.121 Analytical Subsonic Aerodynamics Fall 2017

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.