16.121 ANALYTICAL SUBSONIC AERODYNAMICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Slender Body Theory

Let’s take another look at the Prandtl-Glauert rule. We shall rely more on regular perturbation
methods and boundary conditions. Our flow field is:

J

Assume inviscid, irrotational, compressible flow of an ideal, perfect gas over a slender body,
0 << 1. We have:

Q=Vd=0,i-d,]

The equations for conservation of mass and linear momentum are:
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Where
a = speed of sound y = specific heat ratio

The subscript co denotes conditions far from the airfoil body. The boundary condition on the
body surface may be expressed as:

Qylx,6f)]  _df
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And far from the body

®(x,y) = Uxx, as|x| — oo

Consider the limiting case § — 0, holding M, fixed. Assume an asymptotic expansion for the
velocity potential of the following form:

D(x,y;0, Moo) ~ Uso[X +€0(0) Do (X, ¥; Moo) +€1(0)D1(x, y; Moo) +...]

What does the first term on the right-hand side represent? Is the term correct? Why? Why not?

Consider the surface boundary condition. First, we expand @ [x, 6 f (x)] in a Taylor series about
(x,0):

Dy (%, 8 f (X)) ~ Dy (x,0) + 8 f (X) Dy (x,0) + ...

Substituting and taking the derivative with respect to y:

@y (x,6 f(x)) ~ UsoleogPo, (x,0; Moo) +€1P1, (%, 0; Moo) +...] + Usod f () [€0 Do, (%, 0; Moo) +...]
Thus:

@y (x,6 f (%)) ~ UsoleoPo,, (x, 0; Moo) +€1P1 , (x, 0; Moo) + beo f (X) Do, (X, 0; Moo) +...]
We may also calculate @, (x,6 f(x)):

O (x,6 f (%)) ~ Uso(1 +€0Po, (x,0; Moo) +...)

The surface boundary condition takes the following form:

©y(x,5f(x)) U [EO(DOy (x,0; M) + €1q>1y(x, 0; M) + 5€0f(X)q)0yy (x,0; M) +...]
Dy (x,6 f(x)) Usoll +€0Po, (x,0; Mo) +...]

~ (60@0}/ +€1©1y + 5€0fq)0yy)(l —€0q)0x) + ...

2
~ GO(DOJ, + €1q)1y + 6€0fq)0yy - €Oq)0xq)()y + ...



5f,(X) = €0q)0y + €1¢1y + 6€0f(l)0yy - GSq)()xq)()y + ...

For our assumed asymptotic sequence €¢", we balance the leading term with no contradiction,
i.e., the distinguished limit:

€0(0)=6

Hence

0o

a—yO (%,0; Moo) = f'()
Balancing the next order of terms:

€1 =5€0=62

And

0~ €1q)1y + 560 + q)()yy — €%q)0xq)oy
0~ 6@y, +6% Dy, — 5°Dg, Do,
0~ ®y,(x,0; Moo) + f Do, (x,0; Meo) = Do, (x, 05 Moo) @y, (%, 0; M)

09,
Dy, (x,0; Moo) = By (x,0; Moo) = [®o, o,y = fP@o,, ] (x,0,M,)

There is no contradiction since ®; is determined from @®,. This means that our perturbation
solution yields a linearized boundary condition at the body surface at each order of e".

The conservation equations take the following form:
a® = a’,— (y - 1) UZ,6®, + 0(5%)
(M2, = 1)@, — Py, =0
And for ®@;:

(M3, - 1)@y, — Dy, = M, [(y — 1)MZ, — 2109, @, — 2M2 Do, Do,



The above zeroth order equation, @y, is the basis of slender body theory. The Prandtl-Glauert
rule is shown by re-scaling the x-coordinate:

For M, < 1:

1
jPooUozo 1_M2

Note we have assumed:

\V1-MZ2 >>6

My6 <<1
Where:

\/ M2, -1~ & — Transonic flow
My0 ~ 1 — Hypersonic flow
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