
      16.121 ANALYTICAL SUBSONIC AERODYNAMICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Fundamentals of Fluid Mechanics 

1 FUNDAMENTALS OF FLUID MECHANICS 

1.1 ASSUMPTIONS 

1. Fluid is a continuum 

2. Fluid is inviscid 

3. Fluid is adiabatic 

4. Fluid is a perfect gas 

5. Fluid is a constant-density fluid 

6. Discontinuities (shocks, waves, vortex sheets) are treated as separate and serve as boundaries 
for continuous portions of the flow 

1.2 NOTATION 
0 

p = pressure (static) V = control volume 
0 0 

ρ = density S = surface surrounding V 
T = temperature (absolute) σ = impermeable body 

Q = velocity vector of fluid particles n = normal directed into the fluid 
Q = Ui +Vj +W R = gas constant k 

F = body force per unit mass cp = specific heat at constant pressure 
F =∇Ω cv = specific heat at constant volume 

Ω = potential of the force field γ = cp /cv 

Gravity field: F =−g k; Ω =−g z e = internal energy per unit mass 
h = enthalpy per unit mass; h = e + p s = entropy per unit mass ρ 

1.3 CONTINUITY EQUATION 

∂ρ +∇(ρQ) = 0 
∂t 
Dρ + ρ∇Q = 0 
Dt Ñ Ó 

∂ρ 
dV 0 + ρ(Qn)d s0 = 0 

V 0 ∂t S0+VÑ h ∂ρ i 
+∇(ρQ) dV 0 = 0 

V 0 ∂t 
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1.4 CONSERVATION OF MOMENTUM 

DQ ∇p= F − 
Dt ρ Ñ ÓX ∂ 

Fi = (ρQ)dV 0 + ρQ(Qn)d s0 
V 0 ∂t S0+Vi 

1.5 CONSERVATION OF THERMODYNAMIC ENERGY h iD Q2 ∇· (pQ) 
e + =− + F ·Q

Dt 2 ρ h iD Q2 ∂p
ρ h + = + ρF ·Q

Dt 2 ∂t 

1.6 EQUATION OF STATE 

p = RρT (thermally perfect gas) 

cp ,cv = constants (calorically perfect gas) 

2 PRESSURE DISTRIBUTION AND COMPRESSIBILITY 

2.1 ASSUMPTIONS 

1. Steady flow 

2. Inviscid fluid 

3. No discontinuities (shocks) 

4. Perfect gas 

5. One-dimensional motion 

6. Adiabatic flow 

7. F ≡ 0 

8. Isentropic 

2.2 NOTATION 

( )0 = stagnation conditions, Q = 0 
( )∞ = free stream conditions, Q = uc = u∞c 
( ) = conditions on body surface (airfoil) 

Q = u0i + u0 j + ωk 

0u = u∞+ γu 
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2.3 ENERGY EQUATIONS 

p
h = e + 

ρ h i 
d h + 

1 
Q2 = 0 

2 

(Heat content plus kinetic energy is constant) 

2.4 PERFECT GAS RELATIONS 

p = ρRT 

pV = RT 

1 
V ≡ 

ρ 

Can show, without effort: 

ρV γ = constant ³ 1 ́  γ 
p = constant 
ρ 

p 
a2 = γ , a = speed of sound 

ρ r ³ ´ 
Q = 2cp T0 − T 

h i h ³ ´ γ−1 iT p
T0 − T = T0 1− = T0 1− 

γ 

T0 p0 n h ³ ´ γ−1 io 1p γ 2
Q = 2cp T0 1− 

p0 

2.5 MACH NUMBER 

Q2 2cp (T0 − T ) 2cp (T0 − T )
M 2 = = = 

a2 p
γ γRT 
ρ ´ ´ 2cp 

³ T0 2 ³ T0
M 2 = − 1 = − 1 

γ(cp − cv ) T (γ − 1) T h iT0 γ − 1 = 1+ M 2 = β(γ, M)
T 2 

γ ´ p0 
³ T0 γ 

γ−1 
γ−1= = β 

p T 

1ρ0 
³ T0 

´ 
γ− 

1
1 

γ−1= = β 
ρ T 
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2.6 OTHER USEFUL FORMS, EXPRESSIONS 

Q2 = 2cp (T0 − T ) 

p0 
a0

2 = γ = γRT0 
ρ0 ³ ´ ³ ´ Q2 2cp T 2 T = 1− = 1− 

a2 γR γ − 10 T0 T0 

T γ − 1 ³ Q ´ 2 = 1− 
T0 2 a0 h ³ Q ´ 2i γ p γ − 1 γ−1 = 1− 

p0 2 a0 h ´ 2i 1ρ γ − 1 ³ Q = 1− 
γ−1 

ρ0 2 a0 

γ − 12 2 Q2a = a0 − 
2 

2.7 PRESSURE, VELOCITY RELATIONS IN ISENTROPIC FLOW 

With some effort, one may show: 

h ³ Q2 ´i γ p γ − 1 γ−1 = 1+ M∞ 
2 1− 

p∞ 2 u2 ∞ 

Expanding the right-hand side: 

³ ´ ³ ´ 2 ³ ´ 3 ³ ´ 4p γ Q2 γ Q2 γ(2− γ) Q2 γ(2− γ)(3 − 2γ) Q2 

= 1+ 1− M∞ 
2 + 1− M∞ 

4 + 1− M∞ 
6 + 1− M∞ 

8 +... 
p∞ 2 u∞ 

2 8 u∞ 
2 48 u∞ 

2 384 u∞ 
2 

Obtain an expression for 
p − p∞ 

cp = 1 ρ∞u2 
2 ∞ 

Let 
γV 

Q = u∞+ γV , ¿ 1 
U∞ 

Find cp and discuss its limitations. 

3 SIMILARITY OF FLOWS 

3.1 REQUIREMENTS FOR SIMILARITY OF FLOWS 

1. Similarity in boundary geometry 
Boundary of one flow can be made to coincide with that of another if its linear dimensions are 
multiplied by a constant 

2. Dynamic constraint 
Dependent variables of one flow are proportional to those of another at the corresponding 
points. 
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Example Problem - Illustration 

Consider the dynamics of an incompressible fluid flow with constant. 
Equation of incompressibility: 

Dp ∂ρ ∂ρ = + ui = 0 
Dt ∂t ∂xi 

Equation of continuity: 
∂ui = 0 
∂xi 

Introduce dimensionless variables: 

0 ui 0 ρ 0 p 0 xi 0 tU 
u = , ρ = , p = x = , t = i iU ρ0 ρ0U 2

, 
L L 

U ,ρ0,L − reference quantities 

3.2 LINEAR MOMENTUM ´ 0 0 
0 ³ ∂ 0 ∂ 0 ∂p ρ L γ ∂2 0 
ρ + uα 0 u =− 0 + Fi + 0 0 u 

∂t ∂x i 
∂xi 

U 2 U L ∂xα∂x i 
α a 

0 0 0 
∂ρ 0 ∂ρ ∂u + u = 0 α = 00 α 0 0
∂t ∂x ∂xα a 

U −→ inertia forces Froude no: F = p
gravity force 

U L −→ inertia force 
g L 

Reynolds no: Re = γ viscous force 

F and Re must be the same for both flows. This is sufficient for dynamic similarity along with similar 
boundary geometry. 

U ,ρ0,L may be different for both flows. 

4 EQUATIONS GOVERNING IRROTATIONAL FLOWS OF A HOMENTROPIC GAS 

For this class of flows the simplification is through the introduction of the velocity potential, φ, where 

Q =∇φ 

or 
∂φ 

ui = 
∂xi 

and the vorticity is zero: ω =∇×Q =∇×∇φ = 0 where ω is the vorticity vector. 

The unsteady Bernoulli equation may be written, for this class of flows: 

´ ∂Q ³ 1 1+∇ Q2 −Qxω =− ∇p
∂t 2 ρ 
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since, p = p(ρ), ω = 0 ´ ∂Q ³ 1 1+∇ Q2 + ∇p = 0 
∂t 2 ρ 

´or ³ ∂φ 1 
Z 
∂p∇ + Q2 + = 0 

∂t 2 ρ 

therefore Z 
∂φ 1 d p + Q2 + = f (t )
∂t 2 ρ 

Absorb f (t ) into φ and obtain Z 
∂φ 1 d p + Q2 + = constant 
∂t 2 ρ 

Differentiate above equation with respect to time, t : 

∂2φ ∂Q 2 1 ∂ρ +Q · + a = 0 
∂t 2 ∂t ρ ∂t 

Expressing the continuity equation in terms of φ: 

1 ∂p 1+∇2φ + Q ·∇ρ = 0 
ρ ∂t ρ 

Linear momentum equation rewritten yields 

1 1 1 1 n ∂Q o 
Q · ∇ρ = Q · ∇p = Q − − (Q ·∇)Q

ρ a2 ρ a2 ∂t 

Combining the above three equations yields: 

1 

a2 

∂2Φ 

∂t 2 + 
2 

Q · 
a2 

∂Q 

∂t 
= ∇2φ − 

h i1 
Q · (Q · ∇)Q 

a2 

since ui = ∂Φ , the above equation may be written: ∂xi ³ 
∗ 1 − 

2u ´ ∂2Φ 

a2 ∂x2 

³ 
+ 1 − 

2v ´ ∂2Φ 

a2 ∂y2 

³ 
+ 1− 

2w ´ ∂2Φ 

a2 ∂z2 

uv − 2 
a2 

∂2Φ 

∂x∂y 

v w − 2 
a2 

∂2Φ 

∂y∂z 

uw − 2 
a2 

∂2Φ 

∂x∂z 
= 

1 

a2 

∂2φ 

∂t 2 

u + 2 
a2 

∂2φ 

∂x∂t 

v + 2 
a2 

∂2φ 

∂y∂t 

w + 2 
a2 

∂2φ 

∂z∂t 

where 
∂Φ ∂Φ ∂Φ 

u = v = w = 
∂x ∂y ∂z 

For steady flow of a calorically perfect gas: 

h0 = constant 

Q2 

cp T + = cp T0
2 

γ − 12 2a = a0 − (Φ2 
x + Φ2 

y + Φ2 
z )2 

Equation * is the potential-flow equation. 
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5 SMALL PERTURBATION THEORY 

We will consider a slender body immersed in a uniform flow, viz., 

in the uniform flow: 
Q = U∞i 

in the perturbed flow: 
Q = ui + v j + wk 

0 0 0 
Q = (U∞+ u )i + v

j 
+ w

k 

Q =∇φ 

Now define a perturbation velocity potential, φ(x, y, z), where 

0 ∂φ 
u = 

∂x 

0 ∂φ 
v = 

∂y 

0 ∂φ 
w = 

∂z 

∴ Φ(x, y, z) = U∞x + φ(x, y, z) 

Using the notation in eqn(*): 
0 ∂Φ ∂φ 

u = U∞+ w = = U∞+ 
∂x ∂x 

0 ∂Φ ∂φ 
v = v = = 

∂y ∂y 

0 ∂Φ ∂φ 
w = w = = 

∂z ∂z 

∂2φ 
Φxx = = φxx 

∂x2 

∂2φ 
Φy y = = φy y 

∂y2 

∂2φ 
Φzz = = φzz 

∂z2 

∂2φ 
Φx y = = φx y 

∂x∂y 

∂2φ 
Φy z = = φy z 

∂y∂z 

7 



∂2φ 
Φxz = = φxz 

∂x∂z 
Substituting Φ = U∞x + φ and multiplying eqn(*) by a2 we obtain the perturbation equation or per-
turbation velocity potential equation, for steady flow: 

∗∗[a2−(U∞+φx )
2]φxx +[a2−(φy )

2]φy y +[a2−(φz )
2]φzz −2(U∞+φx )φy φx y −2(U∞+φx )φz φxz −2φy φz φy z = 0 

Note a2 may be expressed as: 

2 2 γ − 1 0 02 + v 
02 + w 

02)a = a∞− (2u U∞+ u 
2 

γ − 12 2a = a∞− (2φxU∞+ (φx )
2 + (φy )

2 + (φz )
2)

2 
Also, note that eqn(**) is exact! It is also non-linear. 

5.1 PERTURBATIONS 

Assume the perturbations are small, viz., 
0 0 0 

u v w ¿ 1; ¿ 1; ¿ 1 
U∞ U∞ U∞ 

In the limit of small perturbations, we may neglect the terms containing squares of the perturbation 
velocities in comparison to those containing first powers. Eqn(**) with a2 substituted becomes 

φx φx φy φz
(1−M∞ 

2 )φxx +φy y +φzz = M∞ 
2 (γ+1) φxx +M∞ 

2 (γ−1) (φy y +φzz )+2M∞ 
2 φx y +2M∞ 

2 φxz 
U∞ U∞ U∞ U∞ 

Note that each term on the right-hand side is non-linear. Each term on the right-hand side contains 
a perturbation velocity (φx ,φy , or φz ). Hence, we may neglect the right-hand side in comparison to 
the left-hand side. We obtain 

(1− M∞ 
2 )φxx + φy y + φzz = 0 

5.2 QUESTIONS 

1. What is the equation where M∞ → 1? 

2. What is the equation where M∞ À 1? 

6 BOUNDARY CONDITIONS 

1. The body surface is a stream line. (inviscid, irrotational flows) 

2. Flow velocity must be tangent to body surface 

3. Velocity vector has to be orthogonal to the unit normal of the body surface 
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The body surface is described by f (x, y, z) 

f (x, y, z) = 0 

Boundary condition is expressed as 
Q ·∇ f (x, y, z) = 0 

or 
∂ f 

ui = 0 
∂xi 

Introducing the perturbation velocities 
0 

u = U∞+ u 
0 

v = v 
0 

w = w 

Substituting, 
0 ∂ f ∂ f 0 ∂ f 

(U∞+ u ) + v + w = 0 
∂x ∂y ∂z 

0 
Since u ¿ U∞, we may write: 

∂ f 0 ∂ f 0 ∂ f 
U∞ + v + w = 0 

∂x ∂y ∂z 

This equation must be satisfied on the surface of the body. Consider the two-dimensional case: 
0 

w = 0 

∂ f = 0 
∂z 

We obtain: 0 
v ∂ f /∂x d y =− = 

U∞ ∂ f /∂y d x 
−1 

Therefore U
u 

∞ 
is the slope of the body (approximately) the slope of the streamline. Recall that ´ 0 ∂φ d y 

u = = U∞
∂y d x BODY 

Now for thin bodies, a small angle of attack, yBODY ≈ 0: this suggests an expansion of v 
0 
(x, y) in a 

powers of y : 
0 ´ 0 0 ³ ∂v 

v (x, y) = v (x,0) + y + ... 
∂y y=0 ´ 0 ³ d y 

∴ v(x, y) = v (x,0) ∼= U∞ 
d x BODY 

For three-dimensional planar flows 
∂ f ∼= 0 
∂z 

and the boundary condition becomes ´ 0 ³ ∂y 
v (x,0, z) = U∞ 

∂x BODY 

at infinity: 
0 

u → 0 
0 

v → 0 
0 

w → 0 
0 0 0 

or w , v , and w are finite. 
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7 LINEARIZED PRESSURE COEFFICIENT 

Let’s revisit the pressure coefficient, cp : 

p − p∞ 
cp ≡ 1 

2 ρ∞U 2 ∞ 

where p is the pressure (local, static) at the location or point of interest in the flow field. Note that cp 

is dimensionless. 
Since, 

1 1 γp∞ γ U 2 γ∞ρ∞U∞ 
2 = ρ∞U∞ 

2 = p∞ = p∞M∞ 
2 

2 2 γp∞ 2 a2 2∞ 

then h i2 p 
cp = − 1 

γM 2 p∞∞ 

for an inviscid, adiabatic, isentropic, steady flow and 
0 0 0 

Q = (U∞+ u )i + v j + w k 

We show that 

h + 
1 

Q2 = h∞+ 
1 

U∞ 
2 

2 2 
which for a calorically perfect gas leads directly to 

T γ − 1 U∞ 
2 −Q2 

= 
T∞ 2 a2 ∞ 

γ − 1 0 = 1− [2u U∞+ u 
02 + v 

02 + w 
02]

2a2 ∞ 

Isentropic flow conditions lead to: h T i γ p γ−1 = 
p∞ T∞ h 0 02 ´i γ p γ − 1 ³ 2u u02 + v 02 + w γ−1 = 1− M 2 + 

p∞ 2 ∞ U∞ U 2 ∞ 

In the case of small velocity perturbations, 

0u ¿ 1 
U∞ ³ u0 ´ 2 

n 1 
U∞ ³ 0 ´ 2v 

n 1 
U∞ ³ 0 ´ 2w 

n 1 
U∞ 

Using the binomial expansion, we show that ³ 0 02 ´ p γ u u02 + v 02 + w = 1 − M 2 2 + + ... 
p∞ 2 ∞ U∞ U 2 ∞ 

therefore: 02u 
cp =− 

U∞ 

Discuss the limitations implied in the above expression for cp . 
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8 CROCCO’S THEOREM 

Consider the motion of a fluid element. The fluid element may both translate and rotate. 
Let: 

v = translational velocity 

w = rotational velocity 

ω = angular velocity 

where 
1 

w = ∇× v 
2 

∇× v ≡ vorticity 

Combine Euler’s equation, first and second laws of thermodynamics: 

∂v 
ρ + ρ(v ·∇)∇= −∇p
∂t 

∇p
T ∇s =∇h − v∇p =∇h − 

ρ 

h = h0 − 
2v

2 

We obtain: 

T ∇s = ∇h0 − v × (∇ × v)+ 
∂v 

∂t 

n 
Crocco’s Theorem 

For steady flow, we obtain 
T ∇s =∇h0 − v × (∇× v) 

or 
v × (∇× v) =∇h0 − T ∇s 

For two-dimensional, steady flows: ³ ´ 1 ∂s ∂h0
2w = T − 

v ∂n ∂n 

Vorticity =⇒ rates of change of entropy and stagnation enthalpy normal to the streamlines 

Flow over a supersonic blunt body: 
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For this flow, 
h0 = constant 

∂h0 = 0 
h 

∂s 6= 0 (why?) 
∂n 
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