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Singular Perturbation Methods
Formation of Shock Waves

Plane waves (small amplitude) in the absence of dissipation propagate without change in shape:
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u = particle velocity
a; = local speed of sound
For finite amplitude plane waves, with dissipation
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¢ = wave speed
Regions of higher condensation, % > 1, overtake those of lower condensation.
* Produces steeping effect
* Non-linear convective terms <=> diffusive terms
* Wave becomes "stationary"
Two time scales:
(A) Viscous diffusive terms balance steep gradients generated by piston initially
(B) Non-linear convective terms balance viscous diffusive terms
Model:

Continuum flow formulation (Navier-Stokes)
€ = piston mach number, € < 1
Boundary conditions for large time: matching principle of inner and outer expansions
Gas is viscous and heat conducting



Non-dimensionalization:
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()* — dimensional variable

R — gas constant

()o — undisturbed value

Navier-Stokes Equations
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o = specific heat ratio
V = Prandtl number

Initial conditions

pu=p=p=T=0;x>0,t=0

Boundary conditions (at piston)

u=1,T,=0;x=€t,t>0

At infinity, damping conditions

wp, T—0,t>0,x—o00

Expansion:
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Linearized solutions, € — 0 (small times) ("outer region")
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Initial and boundary conditions
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Using Laplace transforms:
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Transformed (x, 1)
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SOLUTION AT LARGE TIMES ("INNER REGION")

Re-scale ¢:
=€t

(Linearized, outer solution breaks down when /7 = 0(%) ort= 0(6%))
Now require a shock thickness, on the inner scale, to be order unity:

E=e(x—/y1) =€\/%X

Expansion
u= b +eul +eul + ...
Substitute into Navier-Stokes equations, and obtain Burgers’ equation:
il ii_Lg
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Boundary conditions (matching principle):

Initial conditions .
,u’(é,O) =0,{>0
p(0=1¢<0

Thus on the inner scale (large times) we have an initial value problem.

Consider the transformation

i__ 20 e
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Burgers’ equation becomes:
1
V=5 Py
(Heat conduction equation)

W(E,0) = exp(—%é),f <0

v(,0=1,¢>0
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Match inner and outer solutions using the asymptotic matching principle (not the limit matching

principle).

Composite solution, u° ‘ ,
HC — 'ul +Ho _ ('ul)o
e =l (o)
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